矩阵乘法
在之前的章节已经简单介绍了矩阵乘法,本节系统学习一下多种乘法,他们的结果是一样的,但是都很重要。设有m×nm×nm×n矩阵AAA,n×pn×pn×p矩阵BBB,两矩阵相乘有A×B=CA×B=CA×B=C,可以知道CCC是一个m×pm×pm×p矩阵
- 方法一,行列内积
一般性法则,基本思想是分别计算目标矩阵每个节点的值
[a11a12...a1na21a22...a2n............ai1ai2...ain............am1am2...amn]×[b11b12...b1j...b1pb21b22...b2j...b2p..................bn1bn2...bnj...bnp]=[c11c12...c1pc21c22...c2p............cm1cm2...cmp] \left[ \begin{array} {ccc} a_{11}&a_{12}&...&a_{1n}\\ a_{21}&a_{22}&...&a_{2n}\\ ...&...&...&...\\ a_{i1}&a_{i2}&...&a_{in}\\ ...&...&...&...\\ a_{m1}&a_{m2}&...&a_{mn}\\ \end{array} \right] × \left[ \begin{array} {ccc} b_{11}&b_{12}&...&b_{1j}&...&b_{1p}\\ b_{21}&b_{22}&...&b_{2j}&...&b_{2p}\\ ...&...&...&...&...&...\\ b_{n1}&b_{n2}&...&b_{nj}&...&b_{np}\\ \end{array} \right] = \left[ \begin{array} {ccc} c_{11}&c_{12}&...&c_{1p}\\ c_{21}&c_{22}&...&c_{2p}\\ ...&...&...&...\\ c_{m1}&c_{m2}&...&c_{mp}\\ \end{array} \right] ⎣⎢⎢⎢⎢⎢⎢⎡a11a21...ai1...am1a12a22...ai2...am2..................a1na2n...ain...amn⎦⎥⎥⎥⎥⎥⎥⎤×⎣⎢⎢⎡b11b21...bn1b12b22...bn2............b1jb2j...bnj............b1pb2p...bnp⎦⎥⎥⎤=⎣⎢⎢⎡c11c21...cm1c12c22...cm2............

本文详细介绍了矩阵乘法的四种方法:行列内积、整列相乘、整行相乘以及列乘行,并解释了矩阵乘法的条件。此外,文章探讨了逆矩阵的概念,包括判断矩阵是否可逆的两种方法,以及使用高斯-若尔当消元法求解逆矩阵的过程。最后,讨论了两个可逆矩阵乘积的逆矩阵性质。
最低0.47元/天 解锁文章
1543

被折叠的 条评论
为什么被折叠?



