2021科大讯飞-X光安检图像识别赛Top1方案!

本文介绍了啄云智能GOAT团队在2021科大讯飞X光安检图像识别赛中的冠军方案,包括数据增强、模型选择(Faster R-CNN Res2Net101)、半监督学习和模型融合策略。团队通过数据平衡、MixUpObject、StackImage等技术,结合WBF融合策略,实现了模型性能的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

↑↑↑关注后"星标"Datawhale

每日干货 & 每月组队学习,不错过

 Datawhale干货 

作者:宋志龙、王威,啄云智能GOAT战队

大家好,我们是来自浙江啄云智能科技有限公司的GOAT算法团队,团队多年来专注于X光安检领域算法研究。今天给大家分享的是我们团队在2021科大讯飞--X光安检图像识别挑战赛中所做的一些工作,在讯飞2021年的赛事中,这个比赛可以说是竞争最激烈了,前后历时三个多月,我们团队进行了大量实验,最终拿到了复赛第一、决赛第一的成绩

下面我将从赛题背景、赛题内容分析、解决方案和总结这四个方面进行介绍,欢迎大家在评论区进行交流。

一、赛题背景

X光安检机是目前我国使用最广泛的安检技术手段,广泛应用于城市轨交、铁路、机场、重点场馆、物流寄递等场景。使用人工智能技术,辅助一线安检员进行X光安检判图,可以有效降低因为人员疲劳或注意力不集中带来的漏报等问题。但在实际场景中,因物品的多样性、成像角度、遮挡等问题,为算法的开发带来了一定的挑战。

6e1eba05c27e8e6f3f55bad4d2e87694.png

赛题链接:

http://challenge.xfyun.cn/topic/info?type=Xray-2021

二、赛题内容及分析

1. 赛题内容

赛题数据组成

  • 初赛:

    1)带标注的训练数据,即待识别物品在包裹中的X光图像及其标注文件;

    2)不带标注的测试数据;

  • 复赛:

    1)无标注训练数据即包裹X光图像(其中有的包裹包含待识别物品);

    2)部分待识别物品X光图像(无背景);

  • 目标类别:

    刀、剪刀、尖锐工具、甩棍、小玻璃瓶、电棍、塑料饮料瓶、带喷嘴塑料瓶、电子设备、电池、公章、伞, 共12类。

模型评价指标

wAP50,即各个类别的AP50按照权重进行加权的结果。

其中各类别权重为:

刀1、剪刀1、尖锐工具1、甩棍1、小玻璃瓶1、电棍1、塑料饮料瓶0.7、带喷嘴塑料瓶0.7、电子设备0.7、电池0.7、公章0.7、伞0.7。

模型大小

600M以内

2. 赛题分析
  • 赛题数据中,提供了大量的无标注数据,利用好这些无标注数据进行半监督学习是关键。

  • 数据可视化发现数据背景较复杂且差异较大,设计合适的数据增强方法是关键。

  • 模型评价指标为AP50

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值