蛋白质治病突变的计算方法(三)

3 用于识别致病突变的特征

文献中使用了几种特征来识别蛋白质中的致病突变。它们大致分为三类:(1)序列,(2)结构和(3)网络,以及它们的组合。图1说明了这三组中的一些重要属性。

                                      图1 用于识别致病突变和热点的重要特征。

基于氨基酸序列的特性包括理化特性、二级结构、位置特异性得分矩阵(PSSM)、特异性基序(motifs)和保守性得分。基于结构的性质包括界面分布(interface profiles)、残基的位置在核心和表面、相对溶剂可及面积(RSA)、体积、氢键供体和受体以及统计势能(statistical potentials)。基于网络的特征主要集中在分子相互作用网络、度、介数(betweenness)、紧密度(closeness)、特征向量和聚类系数等方面(eigen vector and clustering coefficient)。

3.1 基于序列的性质

3.1.1 理化性质

Gromiha等人(1999)收集了一组49种氨基酸特性,它们代表了物理、化学、构象(conformational)和能量特性。这些特性被广泛用于理解蛋白质的结构和功能,以及预测突变的后果。AAindexis是另一个数据库,它包含氨基酸各种理化和生化性质的数值指数。(没看懂这个数据库,但是链接是:AAindex: Amino

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值