Description
给定一个正整数nn,求,ans2=∑ni=1μ(i)ans2=∑i=1nμ(i)。
Solution
设S(n)=∑ni=1ϕ(i)S(n)=∑i=1nϕ(i),
为S(n)S(n)卷上一个恒等函数I(i)I(i),则
S(n)=∑i=1n(ϕ×I)(i)−∑i=2nI(i)×S(ni)=n×(n+1)2−∑i=2nS(ni)S(n)=∑i=1n(ϕ×I)(i)−∑i=2nI(i)×S(ni)=n×(n+1)2−∑i=2nS(ni)
同理,设S(n)=∑ni=1μ(i)S(n)=∑i=1nμ(i)
为S(n)S(n)卷上一个恒等函数I(i)I(i),则
S(n)=∑i=1n(μ×I)(i)−∑i=2nI(i)×S(ni)=1−∑i=2nS(ni)S(n)=∑i=1n(μ×I)(i)−∑i=2nI(i)×S(ni)=1−∑i=2nS(ni)
杜教筛即可。
#include <bits/stdc++.h>
using namespace std;
typedef long long lint;
typedef unsigned int uint;
const int maxn = 5000005, N = 5000000;
bool vis[maxn];
int n, T, pr[maxn], pcnt;
lint miu[maxn], phi[maxn];
map<int, lint> mpi, mmu;
void prepare(int n = N)
{
miu[1] = phi[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!vis[i])
pr[++pcnt] = i, miu[i] = -1, phi[i] = i - 1;
for (int j = 1; j <= pcnt && i * pr[j] <= n; ++j) {
vis[i * pr[j]] = 1;
if (i % pr[j] == 0) {
miu[i * pr[j]] = 0; phi[i * pr[j]] = phi[i] * pr[j];
break;
}
miu[i * pr[j]] = -miu[i]; phi[i * pr[j]] = phi[i] * phi[pr[j]];
}
}
for (int i = 1; i <= n; ++i) phi[i] += phi[i - 1], miu[i] += miu[i - 1];
}
lint mius(int n)
{
if (n <= N) return miu[n];
if (mmu.count(n)) return mmu[n];
lint tmp = 1;
for (uint i = 2, j; i <= n; i = j + 1) {
j = n / (n / i);
tmp -= (lint)mius(n / i) * (j - i + 1);
}
return mmu[n] = tmp;
}
lint phis(int n)
{
if (n <= N) return phi[n];
if (mpi.count(n)) return mpi[n];
lint tmp;
if (n & 1) tmp = (lint)(n + 1ll) / 2ll * n;
else tmp = (lint)n / 2ll * (n + 1ll);
for (uint i = 2, j; i <= n; i = j + 1) {
j = n / (n / i);
tmp -= (lint)phis(n / i) * (j - i + 1);
}
return mpi[n] = tmp;
}
int main()
{
freopen("sum.in", "r", stdin);
freopen("sum.out", "w", stdout);
prepare();
scanf("%d", &T);
while (T--)
scanf("%d", &n), printf("%lld %lld\n", phis(n), mius(n));
return 0;
}