如何构建一个可扩展、全球可访问的 GenAI 架构?

你有没有尝试过使用人工智能生成图像?

如果你尝试过,你就会知道,一张好的图像的关键在于一个详细具体的提示。

我不擅长这种详细的视觉提示,所以我依赖大型语言模型来生成详细的提示,然后使用这些提示来生成出色的图像。以下是我能够生成的一些提示和图像的例子:

Prompt: Create a stunning aerial view of Bengaluru, India with the city name written in bold, golden font across the top of the image, with the city skyline and Nandi Hills visible in the background.

Prompt: Design an image of the iconic Vidhana Soudha building in Bengaluru, India, with the city name written in a modern, sans-serif font at the bottom of the image, in a sleek and minimalist style.

为了实现这些结果,我们使用了Flux.1-schnell模型进行图像生成,以及Llamma 3.1 - 8B - Instruct模型来生成提示。这两个模型都托管在一台配备了MIG(多实例 GPU)的单卡 H100 机器上。

这篇博客不是图像生成教程,我们以前已经分享过 Flux 的教程了。这次,我们的目标是创建一个可扩展、安全、全球可访问(且价格合理)的 GenAI 架构。同时,你还将在本文中了解,如何在同一块 H100 GPU 上同时运行 Flux 和 Llamma3 两个模型。

现在中国很多企业都在做大语言模型,就我们接触过的一些公司来讲,哪怕是一些小公司都在利用开源的模型定制自己内部使用的文生图和视频 AI 工具。

想象一下,一个全球化的平台需要为用户快速定制生成图像,或者一个内容平台需要跨地区提供用 AI 生成的文本。

对于开发者来说,想实现这样的架构存在许多挑战。例如:

  • GPU 昂贵的价格
  • GenAI 工具是尖端技术,每个工具都有特定的配置要求
  • 安全地将后端服务器与GenAI服务器连接
  • 将全球分布的用户路由到最近的服务器等

这次分享应该能给你提供一个参考和启发,逐一解决这些问题。

架构设计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值