FROM
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
我的环境
- 语言环境:Python 3.11.9
- 开发工具:Jupyter Lab
- 深度学习环境:
- torch==2.3.1+cu121
- torchvision==0.18.1+cu121
1. 准备知识
1.1 检查环境
# 导入PyTorch库
import torch
# 导入PyTorch的神经网络模块
import torch.nn as nn
# 导入torchvision中的transforms模块,用于图像预处理
import torchvision.transforms as transforms
# 导入整个torchvision库
import torchvision
# 从torchvision库中导入transforms和datasets模块
from torchvision import transforms, datasets
# 导入操作系统接口库os,图像处理库PIL,路径操作库pathlib,以及警告控制库warnings
import os, PIL, pathlib, warnings
# 设置硬件设备,如果有GPU则使用,没有则使用cpu
# torch.device()函数用于指定设备,"cuda"表示GPU,"cpu"表示CPU
# torch.cuda.is_available()函数用于检查系统是否有可用的GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 打印当前PyTorch版本
print(torch.__version__)
# 打印当前设备,以确认是使用GPU还是CPU
device
输出:
1.2 数据导入
导入本地数据
# 导入所需的模块
import os, PIL, random, pathlib
# 设置数据目录的路径
data_dir = './data/'
# 将字符串路径转换为Path对象,便于进行路径操作
data_dir = pathlib.Path(data_dir)
# 使用glob方法获取data_dir下的所有文件和文件夹的路径,并存储在列表data_paths中
data_paths = list(data_dir.glob('*'))
# 通过列表推导式,从data_paths列表中的每个路径字符串中提取出类别名称
# 假设路径的结构是 './data/类别名称/文件名',这里通过split("/")分割路径,并取第二个元素作为类别名称
classeNames = [str(path).split("/")[1] for path in data_paths]
# 输出类别名称列表
classeNames
输出:
# 导入torchvision.transforms模块中的transforms
from torchvision import transforms
# 定义训练数据的变换操作
# 这些操作将被应用于训练数据集中的图像,以增强模型的泛化能力
train_transforms = transforms.Compose([
# Resize图像到统一的尺寸[224, 224],这通常是模型输入所需的尺寸
transforms.Resize([224, 224]),
# ToTensor将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.ToTensor(),
# Normalize进行标准化处理,将数据转换为标准正态分布(高斯分布)
# 这有助于模型更容易地收敛
transforms.Normalize(
mean=[0.485, 0.456, 0.406], # 均值,用于标准化处理
std=[0.229, 0.224, 0.225] # 标准差,用于标准化处理
)
])
# 定义测试数据的变换操作
# 这些操作将被应用于测试数据集中的图像,以确保与训练时相同的预处理流程
test_transform = transforms.Compose([
# Resize图像到统一的尺寸[224, 224]
transforms.Resize([224, 224]),
# ToTensor将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.ToTensor(),
# Normalize进行标准化处理
transforms.Normalize(
mean=[0.485, 0.456, 0.406], # 均值
std=[0.229, 0.224, 0.225] # 标准差
)
])
# 使用datasets.ImageFolder加载图像数据集
# "./PotatoPlants/"是数据集的路径,transform参数指定了数据变换操作
total_data = datasets.ImageFolder("./PotatoPlants/", transform=train_transforms)
total_data
输出:
# 假设total_data是使用ImageFolder加载的数据集
total_data.class_to_idx
输出:
1.3 划分数据集
# 计算训练集大小,占总数据集的80%
train_size = int(0.8 * len(total_data))
# 计算测试集大小,即总数据集减去训练集大小
test_size = len(total_data) - train_size
# 使用random_split函数随机分割数据集为训练集和测试集
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
# 设置批处理大小
batch_size = 32
# 创建训练集的DataLoader
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True, # 是否打乱数据
num_workers=1) # 加载数据的子进程数量
# 创建测试集的DataLoader
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True, # 是否打乱数据
num_workers=1) # 加载数据的子进程数量
# 遍历测试集的DataLoader
for X, y in test_dl:
# 打印特征数据X的形状,[N, C, H, W]分别代表批次大小、通道数、高度、宽度
print("Shape of X [N, C, H, W]: ", X.shape)
# 打印标签数据y的形状和数据类型
print("Shape of y: ", y.shape, y.dtype)
break # 只打印第一个批次的数据形状和类型
输出:
2. 搭建包含C3模块的模型
import torch
import torch.nn as nn
import torch.nn.functional as F
# 自动计算padding值,使得卷积操作后的空间维度保持不变('same' padding)
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
return p
# 定义标准卷积模块
class Conv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
# 定义标准瓶颈卷积模块(Bottleneck)
class Bottleneck(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
# 定义C3模块,包含3个卷积操作的CSP(Cross Stage Partial)瓶颈结构
class C3(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
# 定义模型K
class model_K(nn.Module):
def __init__(self):
super(model_K, self).__init__()
# 卷积模块
self.Conv = Conv(3, 32, 3, 2)
# C3模块1
self.C3_1 = C3(32, 64, 3, 2)
# 全连接网络层,用于分类
self.classifier = nn.Sequential(
nn.Linear(in_features=802816, out_features=100),
nn.ReLU(),
nn.Linear(in_features=100, out_features=4)
)
def forward(self, x):
x = self.Conv(x)
x = self.C3_1(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
# 检测是否有可用的CUDA设备,如果有则使用GPU,否则使用CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# 实例化模型K并将其发送到指定设备
model = model_K().to(device)
model
输出:
model_K(
(Conv): Conv(
(conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_1): C3(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(2): Bottleneck(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(classifier): Sequential(
(0): Linear(in_features=802816, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=4, bias=True)
)
)
查看模型详情:
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
输出:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 32, 112, 112] 864
BatchNorm2d-2 [-1, 32, 112, 112] 64
SiLU-3 [-1, 32, 112, 112] 0
Conv-4 [-1, 32, 112, 112] 0
Conv2d-5 [-1, 32, 112, 112] 1,024
BatchNorm2d-6 [-1, 32, 112, 112] 64
SiLU-7 [-1, 32, 112, 112] 0
Conv-8 [-1, 32, 112, 112] 0
Conv2d-9 [-1, 32, 112, 112] 1,024
BatchNorm2d-10 [-1, 32, 112, 112] 64
SiLU-11 [-1, 32, 112, 112] 0
Conv-12 [-1, 32, 112, 112] 0
Conv2d-13 [-1, 32, 112, 112] 9,216
BatchNorm2d-14 [-1, 32, 112, 112] 64
SiLU-15 [-1, 32, 112, 112] 0
Conv-16 [-1, 32, 112, 112] 0
Bottleneck-17 [-1, 32, 112, 112] 0
Conv2d-18 [-1, 32, 112, 112] 1,024
BatchNorm2d-19 [-1, 32, 112, 112] 64
SiLU-20 [-1, 32, 112, 112] 0
Conv-21 [-1, 32, 112, 112] 0
Conv2d-22 [-1, 32, 112, 112] 9,216
BatchNorm2d-23 [-1, 32, 112, 112] 64
SiLU-24 [-1, 32, 112, 112] 0
Conv-25 [-1, 32, 112, 112] 0
Bottleneck-26 [-1, 32, 112, 112] 0
Conv2d-27 [-1, 32, 112, 112] 1,024
BatchNorm2d-28 [-1, 32, 112, 112] 64
SiLU-29 [-1, 32, 112, 112] 0
Conv-30 [-1, 32, 112, 112] 0
Conv2d-31 [-1, 32, 112, 112] 9,216
BatchNorm2d-32 [-1, 32, 112, 112] 64
SiLU-33 [-1, 32, 112, 112] 0
Conv-34 [-1, 32, 112, 112] 0
Bottleneck-35 [-1, 32, 112, 112] 0
Conv2d-36 [-1, 32, 112, 112] 1,024
BatchNorm2d-37 [-1, 32, 112, 112] 64
SiLU-38 [-1, 32, 112, 112] 0
Conv-39 [-1, 32, 112, 112] 0
Conv2d-40 [-1, 64, 112, 112] 4,096
BatchNorm2d-41 [-1, 64, 112, 112] 128
SiLU-42 [-1, 64, 112, 112] 0
Conv-43 [-1, 64, 112, 112] 0
C3-44 [-1, 64, 112, 112] 0
Linear-45 [-1, 100] 80,281,700
ReLU-46 [-1, 100] 0
Linear-47 [-1, 4] 404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------
3. 模型训练
3.1 训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化累计训练损失和准确率
# 遍历数据加载器中的所有批次
for X, y in dataloader:
X, y = X.to(device), y.to(device) # 将特征和标签转移到GPU或CPU
# 前向传播
pred = model(X) # 使用模型进行预测
loss = loss_fn(pred, y) # 计算预测和真实标签之间的损失
# 反向传播和优化
optimizer.zero_grad() # 清零模型参数的梯度
loss.backward() # 反向传播,计算梯度
optimizer.step() # 根据梯度更新模型参数
# 记录准确率和损失
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() # 计算预测正确的样本数量
train_loss += loss.item() # 累加损失值
# 计算平均准确率和平均损失
train_acc /= size # 将累计准确率除以样本总数,得到平均准确率
train_loss /= num_batches # 将累计损失除以批次数量,得到平均损失
return train_acc, train_loss # 返回训练过程中的平均准确率和平均损失
3.2 测试函数
- 这个
test
函数接收三个参数:dataloader
、model
和loss_fn
。 - 它遍历
dataloader
中的所有批次,对每个批次执行前向传播和损失计算,但不进行反向传播或参数更新,因为测试阶段的目的是评估模型性能,而不是训练模型。 - 在每个批次中,它计算模型的预测值
target_pred
,然后使用损失函数loss_fn
计算预测值和真实标签target
之间的损失loss
。 - 函数还记录了整个测试集上的平均准确率和平均损失。
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset) # 获取测试数据集中的样本总数
num_batches = len(dataloader) # 计算测试数据加载器中的批次数量
test_loss, test_acc = 0, 0 # 初始化累计测试损失和准确率
# 使用torch.no_grad()上下文管理器,停止梯度计算,因为在测试阶段不需要更新模型参数
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device) # 将图像和标签转移到GPU或CPU
# 前向传播,获取模型的预测输出
target_pred = model(imgs)
# 计算模型预测输出和真实标签之间的损失
loss = loss_fn(target_pred, target)
# 累加损失和准确率
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
# 计算平均准确率和平均损失
test_acc /= size # 将累计准确率除以样本总数,得到平均准确率
test_loss /= num_batches # 将累计损失除以批次数量,得到平均损失
return test_acc, test_loss # 返回测试过程中的平均准确率和平均损失
3.3 训练并保存效果最佳的模型
import copy
from datetime import datetime
# 导入必要的PyTorch组件
from torch.optim import lr_scheduler
optimizer = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
epochs = 20
# 初始化训练和测试的损失和准确率列表
train_loss = []
train_acc = []
test_loss = []
test_acc = []
# 初始化最佳准确率和最佳模型参数
best_acc = 0
best_model_params = None
# 定义模型保存的根目录
model_root_dir = './model'
# 开始训练循环
for epoch in range(epochs):
# 这里假设有一个函数来调整学习率,但被注释掉了
# adjust_learning_rate(optimizer, epoch, learn_rate)
# 将模型设置为训练模式
model.train()
# 这里假设有一个函数来执行训练,并返回训练的准确率和损失
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
# 将模型设置为评估模式
model.eval()
# 这里假设有一个函数来执行测试,并返回测试的准确率和损失
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 如果当前epoch的测试准确率超过了之前的最佳准确率,则保存当前模型参数
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model_params = copy.deepcopy(model.state_dict())
# 将当前epoch的准确率和损失添加到列表中
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
# 打印当前epoch的信息
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
# 创建一个带有时间戳的文件夹用来保存每次训练的最好模型
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
model_dir = os.path.join(model_root_dir, timestamp)
os.makedirs(model_dir, exist_ok=True)
# 保存最佳模型参数
torch.save(best_model_params, os.path.join(model_dir, 'best_model_params.pth'))
print('best_model_params.pth 已保存在:' + model_dir)
print('Done')
输出:
4. 结果可视化
4.1 Loss与Accuracy图
import matplotlib.pyplot as plt # 导入matplotlib的pyplot模块,用于数据可视化
import warnings # 导入警告模块
warnings.filterwarnings("ignore") # 忽略警告信息,避免绘图时出现警告提示
# 设置matplotlib的配置参数
plt.rcParams['axes.unicode_minus'] = False # 设置正常显示负号
plt.rcParams['figure.dpi'] = 100 # 设置图像的分辨率
epochs_range = range(epochs) # 创建一个从0到epochs-1的范围,用于x轴的刻度
# 设置图像大小
plt.figure(figsize=(12, 3))
# 创建一个1行2列的子图布局,并定位到第1个子图
plt.subplot(1, 2, 1)
# 在第1个子图上绘制训练和测试的准确率曲线
plt.plot(epochs_range, train_acc, label='Training Accuracy') # 绘制训练准确率
plt.plot(epochs_range, test_acc, label='Test Accuracy') # 绘制测试准确率
plt.legend(loc='lower right') # 添加图例,位置在右下角
plt.title('Training and Validation Accuracy') # 设置子图的标题
# 创建一个1行2列的子图布局,并定位到第2个子图
plt.subplot(1, 2, 2)
# 在第2个子图上绘制训练和测试的损失曲线
plt.plot(epochs_range, train_loss, label='Training Loss') # 绘制训练损失
plt.plot(epochs_range, test_loss, label='Test Loss') # 绘制测试损失
plt.legend(loc='upper right') # 添加图例,位置在右上角
plt.title('Training and Validation Loss') # 设置子图的标题
# 显示绘制的图像
plt.show()
输出:
4.2 模型评估
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
epoch_test_acc, epoch_test_loss
epoch_test_acc
输出: