一、大模型概念
大规模语言模型(LargeLanguageModels,LLM),也称大规模语言模型或大型语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,使用自监督学习方法通过大量无标注文本进行训练。自2018年以来,Google、OpenAI、Meta、百度、华为等公司和研究机构都相继发布了包括BERT[1],GPT[6]等在内多种模型,并在几乎所有自然语言处理任务中都表现出色。
2019年大模型呈现爆发式的增长,特别是2022年11月ChatGPT(ChatGenerativePre-trainedTransformer)发布后,更是引起了全世界的广泛关注。用户可以使用自然语言与系统交互,从而实现包括问答、分类、摘要、翻译、聊天等从理解到生成的各种任务。大型语言模型展现出了强大的对世界知识掌握和对语言的理解。
一般来说大模型(Pretrained Foundation Model,Large Language Model)满足如下条件:
-
百亿级别参数量,GPT3 175B,Ernie-3.0 260B,llama 65B,PaLM 540B
-
具备一定的零示例和少示例预测能力,即预训练之后不需要或者需要少量样本就能解新任务
-
具备突现能力(emergent ability)
(1)量变引发质变:模型效果随参数量/训练计算量/训练数据数量&质量增加出现近乎跳变般的提升 (2)不可预测,不能通过小模型的效果外推
自然语言处理发展
下面回顾人工智能发展的三个阶段
- 1.人工智能的⼀个 要目标是让机器能听会说,能理解会思考
- 2.目前人工智能技术正处在从感知智能到认知智能跨越的时间节点
- 3.自然语⾔处理(NLP)是认知智能中的要内容,是通往强人工智能的必经之路
自然语言处理与图像、语音不同,语言是高度抽象的产物,其基本组成单位并不是明确的物理 。
- 自然语言表示的发展⼀定程度上反映了自然语言处理的发展
- 自然语言表示的变迁很大程度影响着自然语言处理的范式
- 从离散到连续,从上下文无关到上下文相关,从浅层到深层
二、大模型发展时间线:
三、大模型分类
2018年,OpenAI和Google分别推出GPT与BERT,打开了自然语言处处理新篇章,开启“预训练+精调”新范式 根据⾯向的任务类型,相关预训练模型也⼤致分为两⼤类:自然语言处理解(NLU)、自然语言处⽣成(NLG)
开源大模型汇总
闭源大模型汇总
四、大语言模型范式发展
新范式:预训练+上文学习(In Context Learning)
大模型语言构建流程
1.预训练(Pretraining)阶段需要利用海量的训练数据,包括互联网网页、维基百科、书籍、GitHub、论文、问答网站等,构建包含数千亿甚至数万亿单词的具有多样性的内容。
2.有监督微调(SupervisedFinetuning),也称为指令微调(InstructionTuning),利用少量高质量数据集合,包含用户输入的提示词(Prompt)和对应的理想输出结果。用户输入包括问题、闲聊对话、任务指令等多种形式和任务。
3.奖励建模(RewardModeling)阶段目标是构建一个文本质量对比模型,对于同一个提示词,SFT 模型给出的多个不同输出结果的质量进行排序。奖励模型(RM模型)可以通过二分类模型,对输入的两个结果之间的优劣进行判断。RM模型与基础语言模型和SFT模型不同,RM模型本身并不能单独提供给用户使用。奖励模型的训练通常和SFT模型一样,使用数十块GPU,通过几天时间完成训练。
4.强化学习(ReinforcementLearning)阶段根据数十万用户给出的提示词,利用在前一阶段训练的RM模型,给出SFT模型对用户提示词补全结果的质量评估,并与语言模型建模目标综合得到更好的效果。该阶段所使用的提示词数量与有监督微调阶段类似,数量在十万量级,并且不需要人工提前给出该提示词所对应的理想回复。
五、大模型预训练挑战
模型大小几乎呈指数增长,大模型训练面临新挑战:
- 成本高
(1)GPT-175B一次训练光计算资源消耗1200万美元
css
复制代码
a. 采用A100的GPU,算力峰值在312TFLOPS。
b. OpenAI定义的GPT-3 175B模型,算力总需求是3.64E+03 PFLOPS For One Day,不考虑内存限制,即单张A100卡训练 3640*1024 / 312 = 11946 days。
c. 假定我们使用1000张A100,并且能够将算力打满(现实情况是几乎不可能,整体的使用率达到90%已经是优化的很极限的程序了),大约11天可以训练完成。
(2)业界方案:predictive scaling(GPT4核心工作)
《深入浅出LLM 》(一):大模型概念综述
一、大模型概念
大规模语言模型(LargeLanguageModels,LLM),也称大规模语言模型或大型语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,使用自监督学习方法通过大量无标注文本进行训练。自2018年以来,Google、OpenAI、Meta、百度、华为等公司和研究机构都相继发布了包括BERT[1],GPT[6]等在内多种模型,并在几乎所有自然语言处理任务中都表现出色。2019年大模型呈现爆发式的增长,特别是2022年11月ChatGPT(ChatGenerativePre-trainedTransformer)发布后,更是引起了全世界的广泛关注。用户可以使用自然语言与系统交互,从而实现包括问答、分类、摘要、翻译、聊天等从理解到生成的各种任务。大型语言模型展现出了强大的对世界知识掌握和对语言的理解。
一般来说大模型(Pretrained Foundation Model,Large Language Model)满足如下条件:
-
百亿级别参数量,GPT3 175B,Ernie-3.0 260B,llama 65B,PaLM 540B
-
具备一定的零示例和少示例预测能力,即预训练之后不需要或者需要少量样本就能解新任务
-
具备突现能力(emergent ability)
(1)量变引发质变:模型效果随参数量/训练计算量/训练数据数量&质量增加出现近乎跳变般的提升 (2)不可预测,不能通过小模型的效果外推
自然语言处理发展
下面回顾人工智能发展的三个阶段
- 1.人工智能的⼀个 要目标是让机器能听会说,能理解会思考
- 2.目前人工智能技术正处在从感知智能到认知智能跨越的时间节点
- 3.自然语⾔处理(NLP)是认知智能中的要内容,是通往强人工智能的必经之路
自然语言处理与图像、语音不同,语言是高度抽象的产物,其基本组成单位并不是明确的物理 。
- 自然语言表示的发展⼀定程度上反映了自然语言处理的发展
- 自然语言表示的变迁很大程度影响着自然语言处理的范式
- 从离散到连续,从上下文无关到上下文相关,从浅层到深层
二、大模型发展时间线:
三、大模型分类
2018年,OpenAI和Google分别推出GPT与BERT,打开了自然语言处处理新篇章,开启“预训练+精调”新范式 根据⾯向的任务类型,相关预训练模型也⼤致分为两⼤类:自然语言处理解(NLU)、自然语言处⽣成(NLG)
开源大模型汇总
闭源大模型汇总
四、大语言模型范式发展
新范式:预训练+上文学习(In Context Learning)
大模型语言构建流程
1.预训练(Pretraining)阶段需要利用海量的训练数据,包括互联网网页、维基百科、书籍、GitHub、论文、问答网站等,构建包含数千亿甚至数万亿单词的具有多样性的内容。
2.有监督微调(SupervisedFinetuning),也称为指令微调(InstructionTuning),利用少量高质量数据集合,包含用户输入的提示词(Prompt)和对应的理想输出结果。用户输入包括问题、闲聊对话、任务指令等多种形式和任务。
3.奖励建模(RewardModeling)阶段目标是构建一个文本质量对比模型,对于同一个提示词,SFT 模型给出的多个不同输出结果的质量进行排序。奖励模型(RM模型)可以通过二分类模型,对输入的两个结果之间的优劣进行判断。RM模型与基础语言模型和SFT模型不同,RM模型本身并不能单独提供给用户使用。奖励模型的训练通常和SFT模型一样,使用数十块GPU,通过几天时间完成训练。
4.强化学习(ReinforcementLearning)阶段根据数十万用户给出的提示词,利用在前一阶段训练的RM模型,给出SFT模型对用户提示词补全结果的质量评估,并与语言模型建模目标综合得到更好的效果。该阶段所使用的提示词数量与有监督微调阶段类似,数量在十万量级,并且不需要人工提前给出该提示词所对应的理想回复。
五、大模型预训练挑战
模型大小几乎呈指数增长,大模型训练面临新挑战:
- 成本高
(1)GPT-175B一次训练光计算资源消耗1200万美元
css
复制代码
a. 采用A100的GPU,算力峰值在312TFLOPS。
b. OpenAI定义的GPT-3 175B模型,算力总需求是3.64E+03 PFLOPS For One Day,不考虑内存限制,即单张A100卡训练 3640*1024 / 312 = 11946 days。
c. 假定我们使用1000张A100,并且能够将算力打满(现实情况是几乎不可能,整体的使用率达到90%已经是优化的很极限的程序了),大约11天可以训练完成。
(2)业界方案:predictive scaling(GPT4核心工作)
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓