Ollama
是一个快速运行 LLM
(Large Language Models,大语言模型)的简便工具。通过 Ollama
,用户无需复杂的环境配置,即可轻松与大语言模型对话互动。
本文将解析 Ollama
的整体架构,并详细讲解用户在与 Ollama
进行对话时的具体处理流程。
Ollama 整体架构
Ollama
使用了经典的 CS(Client-Server)架构,其中:
- Client 通过命令行的方式与用户交互。
- Server 可以通过命令行、桌面应用(基于 Electron 框架)、Docker 其中一种方式启动。无论启动方式如何,最终都调用同一个可执行文件。
- Client 与 Server 之间使用 HTTP 进行通信。
Ollama Server
有两个核心部分:
ollama-http-server
:负责与客户端进行交互。llama.cpp
:作为 LLM 推理引擎,负责加载并运行大语言模型,处理推理请求并返回结果。ollama-http-server
与llama.cpp
之间也是通过 HTTP 进行交互。
说明:llama.cpp
是一个独立的开源项目,具备跨平台和硬件友好性,可以在没有 GPU、甚至是树莓派等设备上运行。
Ollama 存储结构
Ollama
本地存储默认使用的文件夹路径为 $HOME/.ollama
,文件结构如下图所示:
文件可分为三类:
- 日志文件:包括记录了用户对话输入的
history
文件,以及logs/server.log
服务端日志文件。 - 密钥文件:id_ed25519 私钥和 id_ed25519.pub 公钥。
- 模型文件:包括
blobs
原始数据文件,以及manifests
元数据文件。
元数据文件,例如图中的 models/manifests/registry.ollama.ai/library/llama3.2/latest
文件内容为:
如上图所示,manifests
文件是 JSON 格式,文件内容借鉴了云原生和容器领域中的 OCI spec 规范,manifests
中的 digest 字段与 blobs
相对应。
Ollama 对话处理流程
用户与 Ollama
进行对话的大致流程如下图所示:
- 用户通过 CLI 命令行执行
ollama run llama3.2
开启对话(llama3.2
是一种开源的大语言模型,你也可以使用其它 LLM)。 - 准备阶段:
- CLI 客户端向
ollama-http-server
发起 HTTP 请求,获取模型信息,后者会尝试读取本地的manifests
元数据文件,如果不存在,则响应 404 not found。 - 当模型不存在时,CLI 客户端会向
ollama-http-server
发起拉取模型的请求,后者会去远程存储仓库下载模型到本地。 - CLI 再次请求获取模型信息。
- CLI 客户端向
- 交互式对话阶段:
- CLI 先向
ollama-http-server
发起一个空消息的/api/generate
请求,server 会先在内部进行一些 channel(go 语言中的通道)处理。 - 如果模型信息中包含有 messages,则打印出来。用户可以基于当前使用的模型和 session 对话记录保存为一个新的模型,而对话记录就会被保存为 messages。
- 正式进入对话:CLI 调用
/api/chat
接口请求ollama-http-server
,而ollama-http-server
需要依赖llama.cpp
引擎加载模型并执行推理(llama.cpp
也是以 HTTP server 的方式提供服务)。此时,ollama-http-server
会先向llama.cpp
发起/health
请求,确认后者的健康状况,然后再发起/completion
请求,得到对话响应,并最终返回给 CLI 显示出来。
- CLI 先向
通过上述步骤,Ollama
完成了用户与大语言模型的交互对话。
总结
Ollama
通过集成 llama.cpp
推理引擎,并进一步封装,将复杂的 LLM
技术变得触手可及,为开发者和技术人员提供了一个高效且灵活的工具,很好地助力了各种应用场景下的大语言模型推理与交互。
(关注我,无广告,专注技术,不煽动情绪,也欢迎与我交流)
参考资料:
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓