Codeforces 949E Binary Cards

传送门.

题解:

观察1:
一个序号x不会选超过一个。

假设选了x、x,可以通过选2x、-x替代

观察2:
选了序号x,就不会选-x,反过来也成立。

假设选了x,-x,可以通过选2x、-x替代

*lj样例就是来迷惑人的。

接下来怎么办呢?

暴力。

如果没有奇数,那么肯定不用1或者-1

用奇数的话,就枚举1还是-1,继续递归这个过程。

记得去重,这样的复杂度是 T(n)=2T(n/2)+nO(n log n) T ( n ) = 2 ∗ T ( n / 2 ) + n ≈ O ( n   l o g   n )

Code:

#include<cstdio>
#include<bitset>
#include<algorithm>
#define fo(i, x, y) for(int i = x; i <= y; i ++)
using namespace std;

const int N = 1e5 + 5;

int n, a[N], d[N], b[21][N], a2[25], ans[N];

void dg(int x) {
    if(x > 20) {
        if(d[0] < ans[0])
            fo(i, 0, d[0]) ans[i] = d[i];
        return;
    }
    int pos = 0;
    fo(i, 1, n) pos |= a[i] & a2[x];
    if(!pos) dg(x + 1); else {
        int n0 = n;
        fo(i, 1, n0) b[x][i] = a[i];
        d[++ d[0]] = a2[x];
        fo(i, 1, n0) if(b[x][i] & a2[x])
            a[i] = b[x][i] - a2[x]; else a[i] = b[x][i];
        sort(a + 1, a + n0 + 1);

        n = 0;
        fo(i, 1, n0) if(i == 1 || a[i] != a[i - 1])
            a[++ n] = a[i];

        dg(x + 1);
        d[d[0]] = -a2[x];
        fo(i, 1, n0) if(b[x][i] & a2[x])
            a[i] = b[x][i] + a2[x]; else a[i] = b[x][i];

        n = 0;
        fo(i, 1, n0) if(i == 1 || a[i] != a[i - 1])
            a[++ n] = a[i];

        dg(x + 1);
        d[0] --;
    }
}

int main() {
    a2[0] = 1; fo(i, 1, 20) a2[i] = a2[i - 1] * 2;
    scanf("%d", &n);
    fo(i, 1, n) scanf("%d", &a[i]);
    ans[0] = 30; dg(0);
    printf("%d\n", ans[0]);
    fo(i, 1, ans[0]) printf("%d ", ans[i]);
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值