题目描述:
求∑bi=aμ(i)
1<=a<=b<=10^10
题解:
杜教筛的裸题。
设s(n) = ∑ni=1μ(i)
我们在学莫比乌斯反演的时候曾经证明过:
∑i|nμ(i) = (n = 1)
∑ni=1∑j|iμ(i) = 1
∑ni=1∑n/ij=1μ(i) = 1
∑ni=1s(n/i) = 1
s(n) = 1 - ∑ni=2s(n/i)
套用分块求这个。
如果直接hash,时间复杂度是O(n3/4)
如果预处理了n2/3内的s,复杂度就降为O(n2/3)
Code:
#include<cstdio>
#define ll long long
#define fo(i, x, y) for(int i = x; i <= y; i ++)
using namespace std;
const int Maxn = 21544346, m = 3491279;
bool bb, bz[Maxn + 1];
short int mu[Maxn + 1];
int p[1362202];
ll n, n2, h[m], f[m];
int hash(ll x) {
int y = x % m;
while(h[y] != 0 && h[y] != x) y = (y + 1) % m;
if(h[y] == x) bb = 1;
h[y] = x; return y;
}
void Build() {
mu[1] = 1;
fo(i, 2, Maxn) {
if(!bz[i]) p[++ p[0]]= i, mu[i] = -1;
fo(j, 1, p[0]) {
if(i * p[j] > Maxn) break;
int k = i * p[j]; bz[k] = 1;
if(i % p[j] == 0) {
mu[k] = 0; break;
}
mu[k] = - mu[i];
}
mu[i] += mu[i - 1];
}
}
ll dg(ll x) {
if(x <= Maxn) return mu[x];
bb = 0;
int w = hash(x);
if(bb) return f[w];
ll ans = 1;
for(ll i = 2; i <= x; i ++) {
ll j = x / (x / i);
ans -= dg(x / i) * (j - i + 1);
i = j;
}
f[w] = ans;
return ans;
}
int main() {
Build();
scanf("%lld %lld", &n, &n2);
printf("%lld", dg(n2) - dg(n - 1));
}