【LeetCode: 120. 三角形最小路径和 + 动态规划】

本文介绍了如何使用动态规划方法解决编程面试中的经典问题——给定三角形,找到自顶向下的最小路径和。通过状态转移方程和代码实现展示了求解过程,以及一个示例来帮助理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,优快云-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

在这里插入图片描述

🚩 题目链接

⛲ 题目描述

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2:

输入:triangle = [[-10]]
输出:-10

提示:

1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-104 <= triangle[i][j] <= 104

进阶:

你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题吗?

🌟 求解思路&实现代码&运行结果


⚡ 动态规划

🥦 求解思路
  1. dp[i][j] 表示从点 (i,j) 到底边的最小路径和。
  2. 状态转移方程为 dp[i][j]=min(dp[i+1][j],dp[i+1][j+1])+triangle[i][j]。
  3. 有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
class Solution {

    public int[][] map;

    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        map = new int[n + 1][n + 1];
        for (int i = n - 1; i >= 0; i--) {
            for (int j = triangle.get(i).size() - 1; j >= 0; j--) {
                map[i][j] = Math.min(map[i + 1][j], map[i + 1][j + 1]) + triangle.get(i).get(j);
            }
        }
        return map[0][0];
    }
}

🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值