基于深度置信网络的手写数字识别——以MNIST数据集为例

本文通过深度置信网络(DBN)实现手写数字识别,利用MNIST数据集进行训练和测试。在预训练和微调后,模型在测试集上的错误率为1.44%,表明DBN在模式识别和图像分类方面具有潜力。

基于深度置信网络的手写数字识别——以MNIST数据集为例

深度学习近年来在机器学习领域发展迅速,其中深度神经网络(DNN)作为其中的代表,已经在计算机视觉、自然语言处理、语音识别等领域取得了很好的效果。而深度置信网络(DBN)作为一种新兴的深度学习模型,在模式识别、图像分类等领域也表现出非常强大的能力。本文将介绍如何基于DBN实现手写数字识别,并使用MNIST数据集进行测试。

  1. 数据集简介

MNIST是一个广泛使用的手写数字数据集,由60,000张训练图像和10,000张测试图像组成,其中每张图像都是28x28像素的灰度图像。MNIST数据集可以在 http://yann.lecun.com/exdb/mnist/ 上下载。

  1. 算法实现

首先,我们需要实现DBN的网络结构,此处我们采用两层网络,第一层是可视层(输入层),第二层是隐层。以下是matlab代码:

% DBN网络结构
input_layer_size = 784; % 输入层节点数
hidden_layer_size = 
Code provided by Ruslan Salakhutdinov and Geoff Hinton Permission is granted for anyone to copy, use, modify, or distribute this program and accompanying programs and documents for any purpose, provided this copyright notice is retained and prominently displayed, along with a note saying that the original programs are available from our web page. The programs and documents are distributed without any warranty, express or implied. As the programs were written for research purposes only, they have not been tested to the degree that would be advisable in any important application. All use of these programs is entirely at the user's own risk. How to make it work: 1. Create a separate directory and download all these files into the same directory 2. Download from http://yann.lecun.com/exdb/mnist the following 4 files: o train-images-idx3-ubyte.gz o train-labels-idx1-ubyte.gz o t10k-images-idx3-ubyte.gz o t10k-labels-idx1-ubyte.gz 3. Unzip these 4 files by executing: o gunzip train-images-idx3-ubyte.gz o gunzip train-labels-idx1-ubyte.gz o gunzip t10k-images-idx3-ubyte.gz o gunzip t10k-labels-idx1-ubyte.gz If unzipping with WinZip, make sure the file names have not been changed by Winzip. 4. Download Conjugate Gradient code minimize.m 5. Download Autoencoder_Code.tar which contains 13 files OR download each of the following 13 files separately for training an autoencoder and a classification model: o mnistdeepauto.m Main file for training deep autoencoder o mnistclassify.m Main file for training classification model o converter.m Converts raw MNIST digits into matlab format o rbm.m Training RBM with binary hidden and binary visible units o rbmhidlinear.m Training RBM with Gaussian hidden and binary visible units o backprop.m Backpropagation for fine-tuning an autoencoder o backpropclassify.m Backpropagation for classification using "encoder" network o CG_MNIST.m Conjugate Gradient optimization for fine-tuning an autoencoder o CG_CLASSIFY_INIT.m Co
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值