poj2480 Longge's problem(数论/欧拉函数性质 gcd求和)

本文介绍了一种求解Eular值并优化约数查找的算法,通过枚举因数d来降低复杂度,同时统计d和n/d的贡献。利用筛法预处理素数和Eular值,结合在线求Eular值和约数的方法,实现高效内存使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

对于N(1<N<(1<<31)),求\sum_{i=1}^{N}gcd(i,N)

思路来源

https://blog.youkuaiyun.com/AgoniAngel/article/details/51308742

https://blog.youkuaiyun.com/wmn_wmn/article/details/7733874

题解

枚举因数d即可,可以同时统计d和n/d的贡献,把复杂度降到O(\sqrt{n})

心得

自己板子抄多了都不会写精简代码了

其实这题在线求Eular值然后在线求约数都可以

对于每个n,这样的复杂度是O(\sqrt{n})​​​​​​​的,

通过足矣,还很省内存

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
const int maxn=1e6+10;
bool ok[maxn];
ll prime[maxn],phi[maxn],cnt;
vector<ll>ans; 
ll n,v;
void sieve()
{ 
    phi[1]=1;
	for(ll i=2;i<maxn;++i)
	{
		if(!ok[i])
		{
			prime[cnt++]=i;
			phi[i]=i-1;
		}
		for(int j=0;j<cnt;++j)
		{
			if(i*prime[j]>=maxn)break;
			ok[i*prime[j]]=1;
			if(i%prime[j]==0)
			{
				phi[i*prime[j]]=phi[i]*prime[j];//prime[j]是i的因子 prime[j]的素因子项包含在i的素因子项里
				break; 
			}
			else phi[i*prime[j]]=phi[i]*(prime[j]-1);//prime[j]与i互质 phi[i*prime[j]=phi[i]*phi[prime[j]]
		}
	}
}
ll getphi(ll x)
{
	if(x<maxn)return phi[x];
	//if(p[x])return p[x];
	ll ans=x;
	for(int i=0;i<cnt;++i)
	{
		if(prime[i]*prime[i]>x)break;
		if(x%prime[i]==0)
		{
			ans/=prime[i];
			ans*=(prime[i]-1);
			while(x%prime[i]==0)
			x/=prime[i];
		}
	}
	if(x>1)ans/=x,ans*=x-1;
	return ans;
}
vector<ll>divisor(ll x)
{
	vector<ll>res;
	for(ll i=1;i*i<=x;++i)
	{
		if(x%i==0)
		{
			res.push_back(i);
			if(i!=x/i)res.push_back(x/i);
		}
	}
	return res;
}
int main()
{
	sieve();
	while(~scanf("%lld",&n))
	{
	 v=0;
 	 ans=divisor(n);
 	 int len=ans.size();
 	 for(int i=0;i<len;++i)
 	 {
 	 	ll d=ans[i];
 	 	v+=getphi(n/d)*d;
 	 }
 	 printf("%lld\n",v);
    }
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值