ReAct时代终结?斯坦福发布全新推理框架,性能狂飙112.5%,智能体迎来新王!

【导读】斯坦福和MIT的研究团队推出了一种新的AI智能体推理框架ReCAP,在长上下文任务中全面超越了现有的主流框架ReAct,性能提升显著。ReCAP通过独特的递归树结构和三大机制,解决了大语言模型在复杂任务中常见的目标漂移、上下文断层和成本爆炸等问题。在多项基准测试中,ReCAP均取得了大幅领先的成绩,展现出强大的通用性和稳定性。尽管计算成本略有增加,但其在关键任务中的表现使其成为极具潜力的新一代通用推理架构。

自2022年ReAct框架提出以来,AI智能体推理领域便进入了百家争鸣的时代,各种复杂架构如雨后春笋般涌现。

然而,这些架构大多昙花一现,因其复杂的结构导致在更换评测基准时需要大幅修改示例,表现远不如ReAct稳定泛用,这也使得ReAct在过去三年中,成为了该领域事实上的主流与标杆。

但是,我们真的不能再做得更好了吗?

面对大模型在长上下文任务中走几步就忘的短期记忆顽疾,业界是否只能止步于此?

来自斯坦福大学与MIT的研究团队给出了肯定答案,正式发布的AI Agent推理新框架——ReCAP(递归上下文感知推理与规划),从真正意义上统一了序列推理和层级推理,在多种任务中全面战胜了ReAct,且继承了ReAct示例简单、高通用性,和即插即用的优势。

论文链接:https://arxiv.org/pdf/2510.23822

在严格遵循 pass@1(一次通过)的评测原则下,ReCAP在长序列具身任务Robotouille上相比ReAct基线取得了84.2%(同步)和112.5%(异步)的巨大性能提升。

一、长上下文任务的三大「死穴」

团队指出,当今大语言模型在执行复杂任务时普遍有三种问题:

  • 目标漂移(Goal Drift):执行几步后就逐渐忽略了原本的目标,使得执行结果与期望不符。
  • 上下文断层(Context Loss):高层的规划信息在长序列执行中丢失,导致高层思考与低层执行不协调。
  • 成本爆炸(Prompt Explosion):每次递归都重新铺开上下文示例和提示词,推理成本指数增长。

简单说,LLM就像一个短期记忆型天才,而主流推理框架各有局限:

  • 序列推理(例如Chain of Thoughts,ReAct)虽然上下文连贯,但常常因为任务太长导致目标漂移;
  • 层级推理(例如ADaPT,THREAD)将任务分解为子任务来明确目标,但给子任务单独分配上下文示例和提示词,导致上下文断层和成本爆炸。

二、ReCAP 让序列推理和层级推理有机结合

ReCAP的核心在于将一个有记忆、有反馈的递归树结构作为模型的工作记忆区,其三大机制环环相扣:

  • **计划前瞻分解(Recursive Task Decomposition with Plan-Ahead):**模型首先生成一个完整的子任务列表,但只执行第一个子任务,完成后再动态优化后续计划。
  • **结构化父任务再注入(Consistent Multi-level Context and Structured Injection):**整个执行流程只有一个上下文,由所有任务共享。每次子任务递归返回时,父任务会将自身的思考和计划再次注入上下文,使父任务在重新计划时可以参考上次的思维和执行结果,规划出能真正达成任务目标的底层操作。
  • **滑动窗口记忆(Sliding Window and Scalable Memory Efficiency):**通过滑动窗口机制,在统一上下文中只保留最新关键历史,实现了内存占用可控的深度递归,从根本上杜绝了成本爆炸。

三、实验结果 长上下文任务性能大幅跃升

团队在多个典型长上下文推理基准上验证了ReCAP的效果。结果令人瞩目:

  • 在Robotouille(同步)上取得70%成功率,较ReAct(38%)提升84.2%
  • 在Robotouille(异步)上取得53%成功率,较ReAct(24%)提升112.5%
  • 在ALFWorld上取得91%成功率,稳定优于ReAct(84%)
  • 在SWE-bench Verified取得44.8%的成功率,优于ReAct基线(39.58%)

值得注意的是,团队在实验中始终秉持pass@1的实验原则,即不使用样本层面的重试、多数投票或者束搜索。这意味着ReCAP能在真实多步环境中,更好地保持目标一致性与执行连贯性——不仅「想得对」,还能「做得稳」。

ReCAP是除ReAct之外,又一个能够在具身推理、以及代码编辑这两种截然不同的任务上都取得稳健表现的通用推理架构。

论文中排除了THREAD、Reflexion等其他基线,因其在实验设置中难以稳定复现或与 pass@1 协议不兼容,这进一步凸显了ReCAP作为新一代通用推理基线的潜力。

四、优势与成本的权衡

任何强大的能力都伴随着成本。团队对此进行了透明分析:ReCAP的总计算成本约为ReAct的三倍。这主要来自于其核心的计划前瞻分解机制所额外需要的LLM调用。

然而,考虑到其在关键任务上带来的性能巨幅提升与目标一致性,这种成本的增加在对准确性要求高的实际应用中是可以接受的。这为开发者提供了一个清晰的性价比权衡选项。

五、递归,是通往通用智能的钥匙?

从人类思维到图灵机,递归始终是智能的底层逻辑。ReCAP的提出,可视为AI迈向通用推理系统的关键一步。

其潜力远不止于论文所验证的任务范畴。任何依赖复杂决策回路与长期上下文记忆的大型任务,都是ReCAP的理想应用场景。

例如在深度研究中自主遍历文献、整合多源信息并生成洞察报告;或在复杂软件工程中管理庞大代码库与依赖关系,推进需多步验证的系统项目。

长远来看,ReCAP的递归规划能力可以与空间智能相结合,解决更为复杂的现实世界问题。李飞飞教授近日指出,空间智能——即理解、推理并与三维世界交互的能力,是AI的下一个前沿。

ReCAP可以为具身智能机器人规划复杂的长期任务序列,而空间智能模型则负责处理实时感知与动作控制,二者结合实现机器人在动态环境中的自主规划与可靠执行。

随着代码的开源,一个更擅长长期规划、稳健执行的AI时代或许即将到来。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套 AI 大模型突围资料包

  • ✅ 从零到一的 AI 学习路径图
  • ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
  • ✅ 百度/阿里专家闭门录播课
  • ✅ 大模型当下最新行业报告
  • ✅ 真实大厂面试真题
  • ✅ 2025 最新岗位需求图谱

所有资料 ⚡️ ,朋友们如果有需要 《AI大模型入门+进阶学习资源包》下方扫码获取~
在这里插入图片描述

① 全套AI大模型应用开发视频教程

(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)
在这里插入图片描述

② 大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
在这里插入图片描述

③ 大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

④ AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
在这里插入图片描述

⑤ 大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
在这里插入图片描述

⑥ 大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

图片

以上资料如何领取?

在这里插入图片描述

为什么大家都在学大模型?

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

图片

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!
在这里插入图片描述
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
在这里插入图片描述

以上全套大模型资料如何领取?

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值