5. 模型优化技术
到目前为止,我们已经讨论了 LLM 消耗内存的不同方式、跨多个不同 GPU 分配内存的一些方式,以及优化注意力机制和 KV 缓存。还有多种模型优化技术可以通过修改模型权重本身来减少每个 GPU 上的内存使用。 GPU 还具有专用硬件来加速这些修改值的运算,从而为模型提供更多加速。
5.1 量化(Quantization)
「量化是降低模型权重和激活精度的过程」。大多数模型都以 32 或 16 位精度进行训练,其中每个参数和激活元素占用 32 或 16 位内存(单精度浮点)。然而,大多数深度学习模型可以用每个值八个甚至更少的位来有效表示。
上图显示了一种可能的量化方法之前和之后的值分布。在这种情况下,会丢失一些精度,并且剪裁会丢失一些动态范围,从而允许以更小的格式表示值。
但是降低模型的精度可以带来多种好处。如果模型占用的内存空间较少,则可以在相同数量的硬件上安运行更大的模型。「量化还意味着可以在相同的带宽上传输更多参数,这有助于加速带宽有限的模型」。
LLM 有许多不同的量化技术,涉及降低激活、权重或两者的精度。量化权重要简单得多,因为它们在训练后是固定的。然而,这可能会留下一些性能问题,因为激活仍然保持在更高的精度。 GPU 没有用于乘以 INT8 和 FP16 数字的专用硬件,因此必须将权重转换回更高精度以进行实际运算。
还可以量化激活、Transformer块和网络层的输入,但这也有其自身的挑战。激活向量通常包含异常值,有效地增加了它们的动态范围,并使以比权重更低的精度表示这些值变得更具挑战性。
一种选择是通过模型传递代表性数据集并选择以比其他激活更高的精度表示某些激活来找出这些异常值可能出现的位置 (LLM.int8())。另一种选择是借用易于量化的权重的动态范围,并在激活中重用该范围。
5.2 稀疏(Sparsity)
与量化类似,事实证明,许多深度学习模型对于修剪或用 0 本身替换某些接近 0 的值具有鲁棒性。「稀疏矩阵是许多元素为 0 的矩阵」。这些矩阵可以用压缩形式表示,比完整的稠密矩阵占用的空间更少。
GPU 尤其具有针对某种结构化稀疏性的硬件加速,其中每四个值中有两个由零表示。稀疏表示还可以与量化相结合,以实现更大的执行速度。「寻找以稀疏格式表示大型语言模型的最佳方法仍然是一个活跃的研究领域」,并为未来提高推理速度提供了一个有希望的方向。
5.3 蒸馏(Distillation)
缩小模型大小的另一种方法是通过称为蒸馏的过程将其知识转移到较小的模型。「此过程涉及训练较小的模型(称为学生)来模仿较大模型(教师)的行为」。蒸馏模型的成功例子包括 DistilBERT,它将 BERT 模型压缩了 40%,同时保留了 97% 的语言理解能力,速度提高了 60%。
虽然LLMs中的蒸馏是一个活跃的研究领域,但神经网络的一般方法首次在论文Distilling the Knowledge in a Neural Network(https://arxiv.org/abs/1503.02531)中提出:学生网络经过训练,可以反映较大教师网络的性能,使用损失函数来测量其输出之间的差异。该目标还可能包括将学生的输出与真实标签进行匹配的原始损失函数。
匹配的教师输出可以是最后一层(称为 logits)或中间层激活。
上图显示了知识蒸馏通用的总体框架(https://arxiv.org/pdf/2006.05525)。教师的 logits是学生使用蒸馏损失进行优化的软目标。其他蒸馏方法可能会使用其他损失措施来从老师那里“蒸馏”知识。
「蒸馏的另一种方法是使用教师合成的数据对LLMs学生进行监督培训,这在人工注释稀缺或不可用时特别有用」。一步一步蒸馏!更进一步,除了作为基本事实的标签之外,还从LLMs教师那里提取基本原理。这些基本原理作为中间推理步骤,以数据有效的方式培训规模较小的LLMs。
值得注意的是,当今许多最先进的LLMs都拥有限制性许可证,禁止使用他们的成果来训练其他LLMs,这使得找到合适的教师模型具有挑战性。
6. 模型服务技术
模型执行通常受内存带宽限制,特别是权重中的带宽限制。即使在应用了前面描述的所有模型优化之后,它仍然很可能受到内存限制。因此,在加载模型权重时尽可能多地处理它们。换句话说,尝试并行。可以采取两种方法:
- 「动态批处理」(In-flight batching) :同时执行多个不同的请求。
- 「预测推理」(Speculative inference) :并行执行序列的多个不同步骤以尝试节省时间。
6.1 动态批处理(In-flight batching)
LLMs 具有一些独特的执行特征,这些特征可能导致在实践中难以有效地处理批量请求。一个模型可以同时用于多种不同的任务。从聊天机器人中的简单问答响应到文档摘要或代码块的生成,工作负载是高度动态的,输出大小变化几个数量级。
这种多功能性使得批处理请求并有效地并行执行它们变得具有挑战性,这是服务神经网络的常见优化。这可能会导致某些请求比其他请求更早完成。
为了管理这些动态负载,「许多LLMs 服务解决方案包括一种称为连续或动态批处理的优化调度技术」。这利用了这样一个事实:LLMs的整个文本生成过程可以分解为模型上的多次执行迭代。
「通过动态批处理,服务器运行时会立即从批处理中剔除已完成的序列,而不是等待整个批处理完成后再继续处理下一组请求」。然后,它开始执行新请求,而其他请求仍在进行中。因此,动态批处理可以极大地提高实际用例中 GPU 的整体利用率。
6.2 预测推理(Speculative inference)
预测推理也称为推测采样、辅助生成或分块并行解码,是并行执行 LLM 的另一种方式。通常,GPT 风格的大语言模型是自回归模型,逐个生成文本标记。
生成的每个标记都依赖于它之前的所有标记来提供上下文。这意味着在常规执行中,「不可能从同一个序列并行生成多个token,必须等待第 n 个token生成后才能生成 n+1 个token」。!
上图为预测推理的示例,其中临时模型临时预测并行验证或拒绝的多个未来步骤。在这种情况下,临时模型中的前两个预测token被接受,而最后一个在继续生成之前被拒绝并删除。
预测性抽样提供了一种解决方法。「这种方法的基本思想是使用一些“更便宜”的过程来生成几个token长的临时序列」。然后,并行执行多个步骤的主要“验证”模型,使用廉价临时序列作为需要的执行步骤的“预测”上下文。
如果验证模型生成与临时序列相同的token,那么就知道接受这些token作为输出。否则,可以丢弃第一个不匹配标记之后的所有内容,并使用新的临时序列重复该过程。
如何生成临时token有许多不同的选项,每个选项都有不同的权衡。可以训练多个模型,或在单个预训练模型上微调多个头,以预测未来多个步骤的标记。或者,可以使用小型模型作为临时模型,使用更大、功能更强大的模型作为验证器。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 大模型行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方优快云官方认证二维码
,免费领取【保证100%免费
】