15种高级RAG技术(三)检索后优化

三、检索后优化

检索后优化涵盖了在检索发生之后但在最终响应生成之前所采用的策略或技术。此时一个关键的考虑因素是:即使已经部署了所有的检索前和检索策略,也不能保证检索到的文档包含 LLM 回答查询所需的所有相关信息。这是因为检索到的文档可能是以下任意或所有类别的混合物:

  • Relevant documents
  • Related but irrelevant documents
  • irrelevant and unrelated documents
  • Counterfactual documents(即与正确相关文档相矛盾的文档)

检索后优化策略包含以下几个方面:

  • 使用重排模型
  • prompt compression
  • Corrective RAG

1、使用重排模型

Cuconasu 等人的研究《The Power of Noise: Redefining Retrieval for RAG Systems[1]》表明:related but irrelevant documents are the most harmful to RAG systems。他们发现“在某些情况下,准确率下降超过-67%。更重要的是,仅添加一个相关文档就会导致准确率急剧下降,峰值达到-25%。

更令人惊讶的是,同一研究人员发现不相关的文档“如果放置得当,实际上有助于提高这些系统的准确性。”那些构建 RAG 系统的人应该关注这类研究,但也应对自己的系统进行彻底的 A/B 测试,以确认研究结果是否适用于他们的系统。Cuconasu 的研究还表明,将最相关的文档放置在提示中最接近查询的位置可以提高 RAG 的性能。针对这个现象,重排序模型优化了给定查询的块搜索结果的优先级。这种技术在与混合检索系统和查询扩展结合使用时效果很好。相对于向量召回,重排模型的性能略差,但是更能挖掘出 query 和召回文档之间的相关性。

2、prompt compression

LLMs 可以处理每个块中的信息,以过滤、重新格式化甚至压缩最终进入生成提示的信息。LLMLingua[2] 是这种方法的一个有前途的框架。LLMLingua 使用一个小型语言模型,如 GPT2-small 或 LLaMA-7B,来检测并移除提示中不重要的 tokens。它还使得在黑箱 LLMs 中使用压缩提示进行推理成为可能,实现了高达 20 倍的压缩率,同时性能损失最小。LongLLMLingua[3] 更进一步,通过在进行压缩时考虑输入查询,移除一般不重要和对查询不重要的 tokens。值得注意的是,除了完全理解和使用压缩提示来回答查询(例如,作为 RAG 的一部分),即使提示对人类不可读,GPT-4 也可以用于逆向或解压输入。

3、Corrective Rag

Corrective RAG[4] 是一种由 Yan 等人首次提出的方法,其中 T5-Large 模型被训练用于在将结果提供给大型语言模型(LLM)以生成最终响应之前,识别 RAG 结果是否正确/相关、模棱两可或不正确。未通过正确/相关或模棱两可分类阈值的 RAG 结果将被丢弃。与使用经过微调的 Llama-2 7B 模型和 Self-RAG 的批判方法相比,使用 T5-Large 模型要轻量得多,并且可以与任何大型语言模型结合使用。


最后分享

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方优快云官方认证二维码,免费领取【保证100%免费

如有侵权,请联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值