[LeetCode]Longest Increasing Subsequence

本文探讨了如何在未排序整数数组中找到最长递增子序列长度的问题,并提供了两种解决方案:一种使用动态规划实现,复杂度为O(n²),另一种采用更高效的二分查找方法,将时间复杂度优化到O(n log n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity? 

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.

Subscribe to see which companies asked this question

动态规划:

f(n+1) = if(nums[n+1]>nums[i]) f(i)+1

if(mums[n+1]<nums[i]) 1    i在[0,n]

f(n+1) = max(f(i))

复杂度O(N^2)

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size()==0)
            return 0;
        vector<int> Dp(nums.size(),1);
        int max = 0;
        int ret = 1;
        for(int i=1;i<nums.size();++i){
            int temp = 1;
            for(int j=0; j<i; ++j){
                if(nums[i]>nums[j]){
                    temp = Dp[j]+1;
                }
                else{
                    temp = 1;
                }
                if(temp>max){
                    max = temp;
                }
            }
            Dp[i] = max;
            max = 0;
            temp = 0;
            if(Dp[i]>ret){
                ret = Dp[i];
            }
        }
        return ret;
    }
};

更优解法,维护一个最大递增子串:然后通过二分查找搜寻位置:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
   //Here is the explanation of the idea https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf
        // Binary search for the stack where the nums[i] should be pushed, according the tops of the stacks
        // nums[i] cannot be push to any stack whose top is less than nums[i].
        // The number of stacks is the Length of LIS.

        int n = nums.size();
        if( n==0 ){
            return 0;
        }
        int end = 0;
        vector<int> tops(n, INT_MIN);
        tops[0] = nums[0];

        for(int i=1; i<n; i++){
            int idx = getIndex( tops, end, nums[i] );
            tops[idx] = nums[i];
            end = max( idx, end );
        }

        return end+1;
    }
};

int getIndex( vector<int>& tops, int end, int x ){
    int l = 0;
    int r = end;

    while( l<=r ){
        int mid = (l+r)/2;
        if( tops[mid] == x ){
            return mid;
        }
        else if( tops[mid] > x ){
            r = mid - 1;
        }
        else{
            l = mid + 1;
        }
    }
    return l;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值