You are given an array x of n positive numbers. You start at point (0,0) and
moves x[0] metres to the north, then x[1] metres
to the west, x[2] metres to the south,x[3] metres
to the east and so on. In other words, after each move your direction changes counter-clockwise.
Write a one-pass algorithm with O(1) extra space to determine, if your path crosses itself,
or not.
Example 1:
Given x = [2, 1, 1, 2],
┌───┐
│ │
└───┼──>
│
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4],
┌──────┐
│ │
│
│
└────────────>
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1],
┌───┐
│ │
└───┼>
Return true (self crossing)
注意走的方向是一定的,所以如果没有环的话是往外扩展的回型圈,或者是向内的。
如果出现环可能有三种情况如下。
class Solution {
//3 case
public:
bool isSelfCrossing(vector<int>& x) {
int m = x.size();
for(int i=0; i<m; ++i){
if(i>=3 && x[i]>=x[i-2] && x[i-3]>=x[i-1])
return true;
if(i>=4 && x[i-1]==x[i-3] && x[i]+x[i-4]>=x[i-2])
return true;
if(i>=5 && x[i-3]>x[i-1] && x[i-2]>x[i-4] && x[i]+x[i-4]>=x[i-2] && x[i-1]+x[i-5]>=x[i-3])
return true;
}
return false;
}
};
本文介绍了一个一过性算法,用于确定给定正数数组形成的路径是否自我交叉,仅使用常量额外空间。

被折叠的 条评论
为什么被折叠?



