Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
思路:DFS。或者是采用回溯法。特别注意要先对原数组排序。
class Solution {
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
vector<vector<int> >ret;
vector<int> temp;
sort(candidates.begin(),candidates.end());
for(int i=0;i<candidates.size();++i){
dfs(ret,candidates,i,target,temp);
}
return ret;
}
void dfs(vector<vector<int> >&ret,vector<int> candidates,int i,int target,vector<int> temp){
if(candidates[i]==target){
temp.push_back(candidates[i]);
ret.push_back(temp);
return;
}
if(candidates[i]>target){
return;
}
if(candidates[i]<target){
temp.push_back(candidates[i]);
for(int j=0;j<candidates.size()-i;++j)
dfs(ret,candidates,i+j,target-candidates[i],temp);
}
}
};
AC了,但是发现运行时间长达435ms。分析后发现问题出在。
for(int j=0;j<candidates.size()-i;++j)
dfs(ret,candidates,i+j,target-candidates[i],temp);
我们对明显不会有解(j>target-candidates[i])的结果进行了DFS。修改如下,时间减少到30ms。
class Solution {
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
vector<vector<int> >ret;
vector<int> temp;
sort(candidates.begin(),candidates.end());
for(int i=0;i<candidates.size();++i){
if(candidates[i]<=target)
dfs(ret,candidates,i,target,temp);
}
return ret;
}
void dfs(vector<vector<int> >&ret,vector<int> candidates,int i,int target,vector<int> temp){
if(candidates[i]==target){
temp.push_back(candidates[i]);
ret.push_back(temp);
return;
}
if(candidates[i]<target){
temp.push_back(candidates[i]);
for(int j=0;j<candidates.size()-i;++j)
if(candidates[i+j]<=target-candidates[i]){
dfs(ret,candidates,i+j,target-candidates[i],temp);
}
}
}
};
1021

被折叠的 条评论
为什么被折叠?



