1,先查看是否安装有cuda,我这里是cuda10.1,若没有,直接sudo apt-get下载就行
nvcc --version
2,官网下载对应版本的cudnn,需要注册cuDNN Archive | NVIDIA Developer
3,进入src目录下,下载darknet_ros包,链接如下GitHub - leggedrobotics/darknet_ros: YOLO ROS: Real-Time Object Detection for ROS
git clone https://github.com/leggedrobotics/darknet_ros.git
4,克隆下来可能darknet文件夹是空的,参考解决方法如下:
也可以直接删除darknet文件,cd到功能包下重新下载
ubuntu20 ros darknet 安装记录_啵啵大的博客-优快云博客
git clone https://github.com/pjreddie/darknet
cd darknet
make
5,开始编译!
catkin_make -DCMAKE_BUILD_TYPE=Release
6,报错gcc版本应该小于8,解决方法如下:先安装旧版本的,再修改试用版本
sudo apt-get install g++-8
sudo apt-get install gcc-8
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-8 20
7,报错‘IplImage’ does not name a type; did you mean ‘image’
解决方法参考如下:处理:‘IplImage’ does not name a type; did you mean ‘image’?_许野平的博客-优快云博客
替换darknet/src/imageopencv.cpp的文件如下:
#ifdef OPENCV
#include "stdio.h"
#include "stdlib.h"
#include "opencv2/opencv.hpp"
#include "image.h"
using namespace cv;
extern "C" {
/*IplImage *image_to_ipl(image im)
{
int x,y,c;
IplImage *disp = cvCreateImage(cvSize(im.w,im.h), IPL_DEPTH_8U, im.c);
int step = disp->widthStep;
for(y = 0; y < im.h; ++y){
for(x = 0; x < im.w; ++x){
for(c= 0; c < im.c; ++c){
float val = im.data[c*im.h*im.w + y*im.w + x];
disp->imageData[y*step + x*im.c + c] = (unsigned char)(val*255);
}
}
}
return disp;
}
image ipl_to_image(IplImage* src)
{
int h = src->height;
int w = src->width;
int c = src->nChannels;
image im = make_image(w, h, c);
unsigned char *data = (unsigned char *)src->imageData;
int step = src->widthStep;
int i, j, k;
for(i = 0; i < h; ++i){
for(k= 0; k < c; ++k){
for(j = 0; j < w; ++j){
im.data[k*w*h + i*w + j] = data[i*step + j*c + k]/255.;
}
}
}
return im;
}*/
/*Mat image_to_mat(image im)
{
image copy = copy_image(im);
constrain_image(copy);
if(im.c == 3) rgbgr_image(copy);
IplImage *ipl = image_to_ipl(copy);
Mat m = cvarrToMat(ipl, true);
cvReleaseImage(&ipl);
free_image(copy);
return m;
}
image mat_to_image(Mat m)
{
IplImage ipl = m;
image im = ipl_to_image(&ipl);
rgbgr_image(im);
return im;
}*/
Mat image_to_mat(image im)
{
image copy = copy_image(im);
constrain_image(copy);
if(im.c == 3) rgbgr_image(copy);
Mat m(cv::Size(im.w,im.h), CV_8UC(im.c));
int x,y,c;
int step = m.step;
for(y = 0; y < im.h; ++y){
for(x = 0; x < im.w; ++x){
for(c= 0; c < im.c; ++c){
float val = im.data[c*im.h*im.w + y*im.w + x];
m.data[y*step + x*im.c + c] = (unsigned char)(val*255);
}
}
}
free_image(copy);
return m;
// free_image(copy);
// return m;
// IplImage *ipl = image_to_ipl(copy);
// Mat m = cvarrToMat(ipl, true);
// cvReleaseImage(&ipl);
// free_image(copy);
// return m;
}
image mat_to_image(Mat m)
{
int h = m.rows;
int w = m.cols;
int c = m.channels();
image im = make_image(w, h, c);
unsigned char *data = (unsigned char *)m.data;
int step = m.step;
int i, j, k;
for(i = 0; i < h; ++i){
for(k= 0; k < c; ++k){
for(j = 0; j < w; ++j){
im.data[k*w*h + i*w + j] = data[i*step + j*c + k]/255.;
}
}
}
rgbgr_image(im);
return im;
// IplImage ipl = m;
// image im = ipl_to_image(&ipl);
// rgbgr_image(im);
// return im;
}
void *open_video_stream(const char *f, int c, int w, int h, int fps)
{
VideoCapture *cap;
if(f) cap = new VideoCapture(f);
else cap = new VideoCapture(c);
if(!cap->isOpened()) return 0;
//if(w) cap->set(CV_CAP_PROP_FRAME_WIDTH, w);
//if(h) cap->set(CV_CAP_PROP_FRAME_HEIGHT, w);
//if(fps) cap->set(CV_CAP_PROP_FPS, w);
if(w) cap->set(CAP_PROP_FRAME_WIDTH, w);
if(h) cap->set(CAP_PROP_FRAME_HEIGHT, w);
if(fps) cap->set(CAP_PROP_FPS, w);
return (void *) cap;
}
image get_image_from_stream(void *p)
{
VideoCapture *cap = (VideoCapture *)p;
Mat m;
*cap >> m;
if(m.empty()) return make_empty_image(0,0,0);
return mat_to_image(m);
}
image load_image_cv(char *filename, int channels)
{
int flag = -1;
if (channels == 0) flag = -1;
else if (channels == 1) flag = 0;
else if (channels == 3) flag = 1;
else {
fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);
}
Mat m;
m = imread(filename, flag);
if(!m.data){
fprintf(stderr, "Cannot load image \"%s\"\n", filename);
char buff[256];
sprintf(buff, "echo %s >> bad.list", filename);
system(buff);
return make_image(10,10,3);
//exit(0);
}
image im = mat_to_image(m);
return im;
}
int show_image_cv(image im, const char* name, int ms)
{
Mat m = image_to_mat(im);
imshow(name, m);
int c = waitKey(ms);
if (c != -1) c = c%256;
return c;
}
void make_window(char *name, int w, int h, int fullscreen)
{
namedWindow(name, WINDOW_NORMAL);
if (fullscreen) {
//setWindowProperty(name, CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
setWindowProperty(name, WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);
} else {
resizeWindow(name, w, h);
if(strcmp(name, "Demo") == 0) moveWindow(name, 0, 0);
}
}
}
#endif
8,至此功能包的编译已经基本完成了,接下来调用电脑摄像头测试一下
首先下载摄像头驱动
sudo apt-get install ros-noetic-usb-cam
然后启动摄像头节点
roslaunch usb_cam usb_cam-test.launch
在darknet_ros.launch修改话题名,与摄像头节点发布的一致
9,最后一步,开始检测!
roslaunch darknet_ros darknet_ros.launch
成功!
以下是记事本:
更换cuda版本:
Linux下安装cuda和对应版本的cudnn_linux 安装cuda和cudnn_水哥很水的博客-优快云博客
配置opencv,yolo,cuda等
https://www.cnblogs.com/chua-n/p/13208414.html
Ubuntu20.04+cuda11.1+yolo3 目标检测 深度学习系统 真正从0搭建 包含各种可能遇到的错误_bitmap中有标记为已使用的未用簇_Sliverp的博客-优快云博客
本文仅用于记录学习过程,后续可能用到的和已经参考到的其它文章如下:
ROS下实现darknet_ros(YOLO V3)检测_yolov3怎么定位坐标_pd很不专业的博客-优快云博客
在ROS中实现darknet_ros(YOLO V3)检测以及训练自己的数据集_矩池云训练yolo_马文茂的博客-优快云博客
darknet_ros部署及测试_哪来那么多热情^^的博客-优快云博客