Is It A Tree?
方法一
与“小希的迷宫”不同的是,这里多了个入度的概念(树的概念,只有一个入度为0的根)。
参考样例: 1 2 1 3 2 4 2 5 3 6 7 3 0 0
所以变动:
把判断输入的两个a, b是否在同一集合,变成统计被指向的结点的入度的个数:in[b]++
其他不变。
最后要判断:
1、是否连通图
2、是否入度为0的点只有一个
我的代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn = 2e5+5;
ll f[maxn], vis[maxn], in[maxn];
ll findFather(ll x){
if(x == f[x]) return x;
else return f[x] = findFather(f[x]);
}
void init(){
for(ll i = 1; i <= maxn; i++){
f[i] = i, vis[i] = 0, in[i] = 0;
}
}
int main(){
ll t = 0;
ll a, b, fa, fb, ff, flag, cnt;
while(1){
t++;
ff = 0, flag = 0, cnt = 0;
init();
while(cin >> a >> b){
ff++;
if(a < 0 && b < 0) return 0;
if(a == 0 && b == 0) { break; }
vis[a] = 1, vis[b] = 1;
fa = findFather(a);
fb = findFather(b);
in[b]++;
if(fa == fb){flag = 1; }
else f[fa] = fb;
}
if(ff == 1){cout << "Case " << t << " is a tree." << endl; }
else if(flag == 1){cout << "Case " << t << " is not a tree." << endl; }
else {
ll root = 0;flag = 1;
for(ll i = 1; i <= maxn; i++){
if(vis[i] && in[i] == 0) root++;
if(vis[i] && f[i] == i) cnt++;
}
if(root > 1) flag = 0;
if(cnt > 1) flag = 0;
if(flag){cout << "Case " << t << " is a tree." << endl; }
else {cout << "Case " << t << " is not a tree." << endl;}
}
}
}
/*
6 8 5 3 5 2 6 4 5 6 0 0
8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0
3 8 6 8 6 4 5 3 5 6 5 2 0 0
-1 -1
*/
方法二
判断是不是一棵树:
1、连通图
2、点数 = 边数 + 1
这个做法与“[小希的迷宫]”(https://blog.youkuaiyun.com/Chancy_Lu/article/details/116756322)只有输出不同。
11万+

被折叠的 条评论
为什么被折叠?



