点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
扩散模型近期在自动驾驶方向的工作越来越多,除了传统的生成方向,目前已经扩展到端到端、语义分割、轨迹预测、规划控制等等很多子方向。目前自动驾驶扩散模型的趋势已成,为此自动驾驶之心汇总了相关综述和论文,更多详细资料欢迎加入『自动驾驶之心知识星球』获取全部资料!
综述
Efficient Diffusion Models: A Comprehensive Survey from Principles to Practices
论文链接:https://arxiv.org/abs/2410.11795
Diffusion Models in 3D Vision: A Survey
论文链接:https://arxiv.org/abs/2410.04738
Conditional Image Synthesis with Diffusion Models: A Survey
论文链接:https://arxiv.org/abs/2409.19365
Trustworthy Text-to-Image Diffusion Models: A Timely and Focused Survey
论文链接:https://arxiv.org/abs/2409.18214
A Survey on Diffusion Models for Recommender Systems
论文链接:https://arxiv.org/abs/2409.05033
Diffusion-Based Visual Art Creation: A Survey and New Perspectives
论文链接:https://arxiv.org/abs/2408.12128
Replication in Visual Diffusion Models: A Survey and Outlook
论文链接:https://arxiv.org/abs/2408.00001
Diffusion Model-Based Video Editing: A Survey
论文链接:https://arxiv.org/abs/2407.07111
Diffusion Models and Representation Learning: A Survey
论文链接:https://arxiv.org/abs/2407.00783
A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models
论文链接:https://arxiv.org/abs/2406.14555
Diffusion Models in Low-Level Vision: A Survey
论文链接:https://arxiv.org/abs/2406.11138
Video Diffusion Models: A Survey
论文链接:https://arxiv.org/abs/2405.03150
A Survey on Diffusion Models for Time Series and Spatio-Temporal Data
论文链接:https://arxiv.org/abs/2404.18886
Controllable Generation with Text-to-Image Diffusion Models: A Survey
论文链接:https://arxiv.org/abs/2403.04279
Diffusion Model-Based Image Editing: A Survey
论文链接:https://arxiv.org/abs/2402.17525
Diffusion Models, Image Super-Resolution And Everything: A Survey
论文链接:https://arxiv.org/abs/2401.00736
A Survey on Video Diffusion Models
论文链接:https://arxiv.org/abs/2310.10647
A Survey of Diffusion Models in Natural Language Processing
论文链接:https://arxiv.org/abs/2305.14671
自动驾驶中的扩散模型
OLiDM: Object-aware LiDAR Diffusion Models for Autonomous Driving
论文链接:https://arxiv.org/abs/2412.17226
SynDiff-AD: Improving Semantic Segmentation and End-to-End Autonomous Driving with Synthetic Data from Latent Diffusion Models
论文链接:https://arxiv.org/abs/2411.16776
Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction
论文链接:https://arxiv.org/abs/2411.16457
DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving
论文链接:https://arxiv.org/abs/2411.15139
Efficient Domain Augmentation for Autonomous Driving Testing Using Diffusion Models
论文链接:https://arxiv.org/abs/2409.13661
DriveDiTFit: Fine-tuning Diffusion Transformers for Autonomous Driving
论文链接:https://arxiv.org/abs/2407.15661
VQA-Diff: Exploiting VQA and Diffusion for Zero-Shot Image-to-3D Vehicle Asset Generation in Autonomous Driving
论文链接:https://arxiv.org/abs/2407.06516
Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation
论文链接:https://arxiv.org/abs/2407.06317
Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous Driving and Zero-Shot Instruction Following
论文链接:https://arxiv.org/abs/2402.06559
Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion
论文链接:https://arxiv.org/abs/2311.01017
2667

被折叠的 条评论
为什么被折叠?



