ok_recur.c

 
peError Traceback (most recent call last) Cell In[39], line 15 12 monthly_stats_reset = monthly_stats.reset_index() 14 # 确保 'date' 列是 datetime 类型 ---> 15 monthly_stats_reset['date'] = pd.to_datetime(monthly_stats_reset['date']) 17 # 提取 Year 和 Month 18 monthly_stats_reset['Year'] = monthly_stats_reset['date'].dt.year File D:\Anaconda\lib\site-packages\pandas\core\tools\datetimes.py:1068, in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache) 1066 result = arg.map(cache_array) 1067 else: -> 1068 values = convert_listlike(arg._values, format) 1069 result = arg._constructor(values, index=arg.index, name=arg.name) 1070 elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)): File D:\Anaconda\lib\site-packages\pandas\core\tools\datetimes.py:403, in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact) 401 orig_arg = arg 402 try: --> 403 arg, _ = maybe_convert_dtype(arg, copy=False, tz=timezones.maybe_get_tz(tz)) 404 except TypeError: 405 if errors == "coerce": File D:\Anaconda\lib\site-packages\pandas\core\arrays\datetimes.py:2268, in maybe_convert_dtype(data, copy, tz) 2264 raise TypeError(f"dtype {data.dtype} cannot be converted to datetime64[ns]") 2265 elif is_period_dtype(data.dtype): 2266 # Note: without explicitly raising here, PeriodIndex 2267 # test_setops.test_join_does_not_recur fails -> 2268 raise TypeError( 2269 "Passing PeriodDtype data is invalid. Use `data.to_timestamp()` instead" 2270 ) 2272 elif is_extension_array_dtype(data.dtype) and not is_datetime64tz_dtype(data.dtype): 2273 # TODO: We have no tests for these 2274 data = np.array(data, dtype=np.object_) TypeError: Passing PeriodDtype data is invalid. Use `data.to_timestamp()` instead
最新发布
11-01
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值