未降维时
scikit-learn 中的PCA¶
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target
from sklearn.model_selection import
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
X_train.shape
输出:(1347, 64)
X_test.shape
输出:(450, 64)
%%time
from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train,y_train)
输出:Wall time: 134 ms
KNeighborsClassifier()
knn_clf.score(X_test,y_test)#得到的识别率很高
输出:0.9866