梯度下降法
线性回归中使用梯度下降法
上式中将
的值统一表示成了
X
b
(
i
)
Θ
X_{b}^{(i)}\Theta
Xb(i)Θ
把目标函数J(
θ
\theta
θ)当成
1
2
m
\frac{1}{2m}
2m1中的2会在求偏导的时候约掉。如果没有
1
m
\frac{1}{m}
m1,则梯度中每一行的元素都会非常大,在具体实践中就会出现问题
在线性回归模型中使用梯度下降法
### 在线性回归模型中使用梯度下降法
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(666)
x = 2 * np.random.random(size = 100)#模拟100个样本,每个样本只有一个特征
y = x * 3. + 4. + np.random.normal(size=100)
X = x.reshape(-1,1)#X为100行1列
X.shape
输出:(100,1)
y.shape
输出:(100,)
plt.scatter(x,y)
plt.show()
输出图片:
使用梯度下降法训练
def J(theta,X_b,y):
try:
return np.sum((y - X_b.dot(theta)) ** 2) / len(X_b)
except:
return float('inf')#如果出现异常的话,返回一个float值,代表损失函数达到了最大
def dJ(theta,X_b,y):
res = np.empty(len(theta))
res[0] = np.sum(X_b.dot(theta) - y)
for i in range(1,len(theta)):
res[i] = (X_b.dot(theta) - y).dot(X_b[:,1])
return res * 2 / len(X_b)
def gradient_descent(X_b,y,initial_theta,eta,n_iters = 1e4,epsilon=1e-8):
theta = initial_theta
i_iter = 0
while i_iter < n_iters:
gradient = dJ(theta,X_b,y)
last_theta = theta
theta = theta - eta * gradient
if(abs(J(theta,X_b,y) - J(last_theta,X_b,y)) < epsilon):
break
i_iter += 1
return theta
X_b = np.hstack([np.ones((len(X),1)),X])#X_b是在原来的X基础上添加一列,每一个元素都是1
initial_theta = np.zeros(X_b.shape[1])#设置一个n+1维的向量。该向量中元素的数量是特征数+1,也就是X_b矩阵中的里列数
eta = 0.01
theta = gradient_descent(X_b,y,initial_theta,eta)
theta#计算结果分别代表截距和斜率
输出结果:array([4.02145786, 3.00706277])
//所得到的截距和斜率与一开始的设定差不多,说明梯度下降法成功的训练了模型
封装我们的线性回归算法
from playML.LinearRegression import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit_gd(X,y)
输出:LinearRegression()
lin_reg.coef_
输出:array([3.00706277])
lin_reg.intercept_
输出:4.021457858204859
import numpy as np
from .metrics import r2_score
class LinearRegression:
def __init__(self):
"""初始化Linear Regression模型"""
self.coef_ = None
self.intercept_ = None
self._theta = None
def fit_normal(self, X_train, y_train):
"""根据训练数据集X_train, y_train训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def fit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4):
"""根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
def J(theta, X_b, y):
try:
return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
except:
return float('inf')
def dJ(theta, X_b, y):
# res = np.empty(len(theta))
# res[0] = np.sum(X_b.dot(theta) - y)
# for i in range(1, len(theta)):
# res[i] = (X_b.dot(theta) - y).dot(X_b[:, i])
# return res * 2 / len(X_b)
return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(X_b)
def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
theta = initial_theta
cur_iter = 0
while cur_iter < n_iters:
gradient = dJ(theta, X_b, y)
last_theta = theta
theta = theta - eta * gradient
if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
break
cur_iter += 1
return theta
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
initial_theta = np.zeros(X_b.shape[1])
self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def fit_sgd(self, X_train, y_train, n_iters=5, t0=5, t1=50):
"""根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
assert n_iters >= 1
def dJ_sgd(theta, X_b_i, y_i):
return X_b_i * (X_b_i.dot(theta) - y_i) * 2.
def sgd(X_b, y, initial_theta, n_iters, t0=5, t1=50):
def learning_rate(t):
return t0 / (t + t1)
theta = initial_theta
m = len(X_b)
for cur_iter in range(n_iters):
indexes = np.random.permutation(m)
X_b_new = X_b[indexes]
y_new = y[indexes]
for i in range(m):
gradient = dJ_sgd(theta, X_b_new[i], y_new[i])
theta = theta - learning_rate(cur_iter * m + i) * gradient
return theta
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
initial_theta = np.random.randn(X_b.shape[1])
self._theta = sgd(X_b, y_train, initial_theta, n_iters, t0, t1)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def predict(self, X_predict):
"""给定待预测数据集X_predict,返回表示X_predict的结果向量"""
assert self.intercept_ is not None and self.coef_ is not None, \
"must fit before predict!"
assert X_predict.shape[1] == len(self.coef_), \
"the feature number of X_predict must be equal to X_train"
X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
return X_b.dot(self._theta)
def score(self, X_test, y_test):
"""根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
y_predict = self.predict(X_test)
return r2_score(y_test, y_predict)
def __repr__(self):
return "LinearRegression()"
将第0项和其他项进行统一,
X
0
(
i
)
X_{0}^{(i)}
X0(i)的值恒为1
import numpy as np
from sklearn import datasets
boston = datasets.load_boston()
X = boston.data
y = boston.target
X = X[y < 50.0]
y = y[y < 50.0]
from playML.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,seed=666)
from playML.LinearRegression import LinearRegression
lin_regl = LinearRegression()
%time lin_regl.fit_normal(X_train,y_train)
lin_regl.score(X_test,y_test)
输出:Wall time: 499 ms
0.8129794056212895
## 使用梯度下降法
lin_reg2 = LinearRegression()
lin_reg2.fit_gd(X_train,y_train)
输出:
D:\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:87: RuntimeWarning: overflow encountered in reduce
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
C:\Users\wanggege\Desktop\MachineLearning\playML\LinearRegression.py:32: RuntimeWarning: overflow encountered in square
return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
C:\Users\wanggege\Desktop\MachineLearning\playML\LinearRegression.py:53: RuntimeWarning: invalid value encountered in double_scalars
if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
LinearRegression()
lin_reg2.coef_
输出:array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan])
X_train[:10,:]
输出:
array([[1.42362e+01, 0.00000e+00, 1.81000e+01, 0.00000e+00, 6.93000e-01,
6.34300e+00, 1.00000e+02, 1.57410e+00, 2.40000e+01, 6.66000e+02,
2.02000e+01, 3.96900e+02, 2.03200e+01],
[3.67822e+00, 0.00000e+00, 1.81000e+01, 0.00000e+00, 7.70000e-01,
5.36200e+00, 9.62000e+01, 2.10360e+00, 2.40000e+01, 6.66000e+02,
2.02000e+01, 3.80790e+02, 1.01900e+01],
[1.04690e-01, 4.00000e+01, 6.41000e+00, 1.00000e+00, 4.47000e-01,
7.26700e+00, 4.90000e+01, 4.78720e+00, 4.00000e+00, 2.54000e+02,
1.76000e+01, 3.89250e+02, 6.05000e+00],
[1.15172e+00, 0.00000e+00, 8.14000e+00, 0.00000e+00, 5.38000e-01,
5.70100e+00, 9.50000e+01, 3.78720e+00, 4.00000e+00, 3.07000e+02,
2.10000e+01, 3.58770e+02, 1.83500e+01],
[6.58800e-02, 0.00000e+00, 2.46000e+00, 0.00000e+00, 4.88000e-01,
7.76500e+00, 8.33000e+01, 2.74100e+00, 3.00000e+00, 1.93000e+02,
1.78000e+01, 3.95560e+02, 7.56000e+00],
[2.49800e-02, 0.00000e+00, 1.89000e+00, 0.00000e+00, 5.18000e-01,
6.54000e+00, 5.97000e+01, 6.26690e+00, 1.00000e+00, 4.22000e+02,
1.59000e+01, 3.89960e+02, 8.65000e+00],
[7.75223e+00, 0.00000e+00, 1.81000e+01, 0.00000e+00, 7.13000e-01,
6.30100e+00, 8.37000e+01, 2.78310e+00, 2.40000e+01, 6.66000e+02,
2.02000e+01, 2.72210e+02, 1.62300e+01],
[9.88430e-01, 0.00000e+00, 8.14000e+00, 0.00000e+00, 5.38000e-01,
5.81300e+00, 1.00000e+02, 4.09520e+00, 4.00000e+00, 3.07000e+02,
2.10000e+01, 3.94540e+02, 1.98800e+01],
[1.14320e-01, 0.00000e+00, 8.56000e+00, 0.00000e+00, 5.20000e-01,
6.78100e+00, 7.13000e+01, 2.85610e+00, 5.00000e+00, 3.84000e+02,
2.09000e+01, 3.95580e+02, 7.67000e+00],
[5.69175e+00, 0.00000e+00, 1.81000e+01, 0.00000e+00, 5.83000e-01,
6.11400e+00, 7.98000e+01, 3.54590e+00, 2.40000e+01, 6.66000e+02,
2.02000e+01, 3.92680e+02, 1.49800e+01]])
# 由上述数据可以知道:每一个特征所对应的数据的规模是不一样的,有的只用零点几,有的数据能达到几百的维度,面对这样的数据我们最终所求到的结果的维度可能也是非常大的,默认的eta(0.01)最终形成的步长还是太大,使得我们梯度下降法的过程最终是不收敛的,为验证这个假设,我们手动设置一个eta
lin_reg2.fit_gd(X_train,y_train,eta = 0.000001)
输出:LinearRegression()
lin_reg2.score(X_test,y_test)
输出:0.2758681872447726
### n_iters设置梯度下降法最多要执行几次
%time lin_reg2.fit_gd(X_train,y_train,eta=0.000001,n_iters=1e6)
输出:Wall time: 1min 7s
LinearRegression()
### 运行了1e6次最终得到的结果还是未达到理想中的最小值,如果需要更理想的值则需要执行更多次,但显然太耗时了,更好的额解决方式是进行数据归一化
lin_reg2.score(X_test,y_test)
输出:0.754293258194391
梯度下降法与数据归一化
使用梯度下降法前进行数据归一化
from sklearn.preprocessing import StandardScaler
X_train
standardScaler = StandardScaler()
standardScaler.fit(X_train)
StandardScaler()
X_train_standard = standardScaler.transform(X_train)
lin_reg3 = LinearRegression()
%time lin_reg3.fit_gd(X_train_standard,y_train)
Wall time: 868 ms
LinearRegression()
X_test_standard = standardScaler.transform(X_test)
该结果与使用正规方程得到的结果是一致的,说明已经找到了损失函数的最小值
lin_reg3.score(X_test_standard,y_test)
0.8129873310487505