题目:
题意:
首先a…z=1..26,*=0
读入p(模数且为质数),s(下标从0开始),s长度为n
那么求方程组
10x1+11x2...1n−1xn≡s1(modp) 1 0 x 1 + 1 1 x 2 . . .1 n − 1 x n ≡ s 1 ( mod p )
20x1+21x2...2n−1xn≡s2(modp) 2 0 x 1 + 2 1 x 2 . . .2 n − 1 x n ≡ s 2 ( mod p )
30x1+31x2...3n−1xn≡s3(modp) 3 0 x 1 + 3 1 x 2 . . .3 n − 1 x n ≡ s 3 ( mod p )
…
n0x1+n1x2...nn−1xn≡sn(modp) n 0 x 1 + n 1 x 2 . . . n n − 1 x n ≡ s n ( mod p )
的一组合法解
没有无解或多解的情况
题解:
高斯消元求同余方程裸题
就是普通的高斯消元把除法变成乘逆元
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N=100;
int mod,n,a[N][N],b[N],ans[N];char st[N];
int ksm(int a,int k)
{
int ans=1;
for (;k;k>>=1,a=a*a%mod)
if (k&1) ans=ans*a%mod;
return ans;
}
int inv(int a){return ksm(a,mod-2);}
void gauss()
{
for (int i=1;i<=n;i++)
{
int num=i;
for (int j=i+1;j<=n;j++)
if (a[j][i]>a[num][i]) num=j;
if (num!=i)
{
for (int j=i;j<=n;j++)
swap(a[i][j],a[num][j]);
swap(b[i],b[num]);
}
for (int j=i+1;j<=n;j++)
{
int t=a[j][i]*inv(a[i][i])%mod;
for (int k=i;k<=n;k++) a[j][k]=(a[j][k]-t*a[i][k]%mod+mod)%mod;
b[j]=(b[j]-t*b[i]%mod+mod)%mod;
}
}
for (int i=n;i>=1;i--)
{
ans[i]=b[i]*inv(a[i][i])%mod;
for (int j=1;j<i;j++)
b[j]=(b[j]-a[j][i]*ans[i]%mod+mod)%mod;
}
}
int main()
{
int T;scanf("%d",&T);
while (T--)
{
scanf("%d",&mod);
scanf("%s",st+1);
n=strlen(st+1);
for (int i=1;i<=n;i++)
if (st[i]=='*') b[i]=0;else b[i]=st[i]-'a'+1;
for (int i=1;i<=n;i++)
for (int j=0;j<=n-1;j++)
a[i][j+1]=ksm(i,j);
gauss();
for (int i=1;i<=n;i++) printf("%d ",ans[i]);
printf("\n");
}
}