Think:
1知识点:矩阵快速幂
2题意:初始时输入一个序列a(0), a(1), … a(n-1),之后不断构造一个新序列,新序列构造规则为每次选取上次序列的固定位置元素累加
3题意分析:
(1):构造系数矩阵,矩阵快速幂.因为每次对于新序列结点ci,其值与上次序列的固定位置有关系,因此可思考是否可以构造一个0,1系数矩阵,之后每次重复构造新序列时,每构造一次,就乘以0,1系数矩阵一次.
(2):对于序列[a(0), .., a(n-1)] * M = [c(0), …, c(n-1)]故可知0,1系数矩阵M应为n*n,进而寻找关系,得到M[j][i]:序列ci选择的固定位置j
4反思:
(1):矩阵快速幂的矩阵相乘函数,矩阵乘法公式写错,需要反思,要细心严谨
(2):求解pri数组时,矩阵乘法公式写错且忘记取模,需要反思,要专注细心
以下为Accepted代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int mod = 1000;
struct Matrix{
int v[54][54];
};
Matrix multiply(Matrix a, Matrix b, int Matrix_len);
Matrix matrix_pow(Matrix x, int k, int Matrix_len);
int rec[104], pri[104];
int main(){
int T, n, r, m, id, i, j, k;
scanf("%d", &T);
while(T--){
scanf("%d %d", &n, &r);
for(i = 0; i < n; i++)
scanf("%d", &rec[i]);
Matrix x;
memset(x.v, 0, sizeof(x.v));
for(i = 0; i < n; i++){
scanf("%d", &m);
while(m--){
scanf("%d", &id);
x.v[id][i] = 1;
}
}
Matrix y = matrix_pow(x, r, n);
memset(pri, 0, sizeof(pri));
for(j = 0; j < n; j++){
for(k = 0; k < n; k++){
pri[j] += (rec[k]*y.v[k][j]);
pri[j] %= mod;
}
}
for(i = 0; i < n; i++)
printf("%d%c", pri[i], i == n-1? '\n': ' ');
}
return 0;
}
Matrix multiply(Matrix a, Matrix b, int Matrix_len){
Matrix c;
memset(c.v, 0, sizeof(c.v));
for(int i = 0; i < Matrix_len; i++){
for(int j = 0; j < Matrix_len; j++){
for(int k = 0; k < Matrix_len; k++){
c.v[i][j] += (a.v[i][k]*b.v[k][j]);
c.v[i][j] %= mod;
}
}
}
return c;
}
Matrix matrix_pow(Matrix x, int k, int Matrix_len){
Matrix ans;
memset(ans.v, 0, sizeof(ans.v));
for(int i = 0; i < Matrix_len; i++)
ans.v[i][i] = 1;
while(k){
if(k & 1)
ans = multiply(ans, x, Matrix_len);
x = multiply(x, x, Matrix_len);
k >>= 1;
}
return ans;
}