329. Longest Increasing Path in a Matrix

本文介绍了一种使用深度优先搜索(DFS)算法求解二维数组中最大递增路径长度的方法,通过创建辅助缓存矩阵避免重复计算,提高了算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

Input: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].
Example 2:

Input: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
Problem URL


Solution

给一个二维数组,找到其中最长的递增路径的长度。

Using DFS to find the longest path’s length, then using another two dimensional array which contains the length of each cell’s longest path. Because they may be reused. Because we are looking for a longest increasing, using this condition we won’t need a visited array anymore.

Code
class Solution {
    private int[][] dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    public int longestIncreasingPath(int[][] matrix) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0){
            return 0;
        }
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] cache = new int[m][n];
        int res = 1;
        for (int i = 0; i < m; i++){
            for (int j = 0; j < n; j++){
                int len = dfs(matrix, cache, i, j);
                res = Math.max(res, len);
            }
        }
        return res;
    }
    
    private int dfs(int[][] matrix, int[][] cache, int i, int j){
        if (cache[i][j] != 0){
            return cache[i][j];
        }
        int max = 1;
        int m = matrix.length;
        int n = matrix[0].length;
        for (int[] dir : dirs){
            int x = i + dir[0];
            int y = j + dir[1];
            if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]){
                continue;
            }
            int len = dfs(matrix, cache, x, y) + 1;
            max = Math.max(max, len);
        }
        cache[i][j] = max;
        return max;
    }
}

Time Complexity: O(mn)
Space Complexity: O(mn)


Review
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值