[LeetCode 329] Longest Increasing Path in a Matrix

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]

Return 4
The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]

Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Solution:

DFS to go through all nodes and use another array to cache all the visited node, incase we revisit again. reduce alot of unnecessnary operations. Time complixity is O(nm) 


public int longestIncreasingPath(int[][] matrix) {
        if(matrix.length<=0 || matrix[0].length <=0) return 0;
        int max=0, n = matrix.length, m = matrix[0].length;
        int [][] cache = new int[n][m];
        for(int i=0;i<matrix.length;i++){
            for(int j=0;j<matrix[0].length;j++) {
                max = Math.max(max, maxLen(matrix, Integer.MIN_VALUE, i, j, cache));
            }
        }
        return max;
    }
    public int maxLen(int[][] matrix, int min, int r, int c, int[][] cache) {
        if(r<0 || c<0 || r>=matrix.length || c>= matrix[0].length) {
            return 0;
        }
        if(matrix[r][c] <= min) {
            return 0;
        }
        if(cache[r][c] != 0) {
            return cache[r][c];
        }
        min = matrix[r][c];
        int up = maxLen(matrix, min, r-1, c, cache) + 1;
        int left = maxLen(matrix, min, r, c-1, cache) + 1;
        int right = maxLen(matrix, min, r, c+1, cache) + 1;
        int down = maxLen(matrix, min, r+1, c, cache) + 1;
        cache[r][c] = Math.max(up, Math.max(left, Math.max(right,down)));
        return cache[r][c];
    }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值