Codeforces 14D Two Paths

本文介绍了一种算法,通过枚举所有边并使用深度优先搜索(DFS)来找到一棵由N个节点组成的树中两条不相交路径长度的最大乘积。此方法适用于总节点数不超过200的情况。

总的来说就是给你标号为1~N个点,然后这N个点之间有N-1条边,首先根据题意看出两两联通,所以N个点N-1条边形成一棵树。问从中分解出两条路径,注意是路径不是树。因为原图是一棵树,那么我们无论删去其中一条边,都能是原图产生两个连通分支,那么所求路径也就包含在这两个连通分支里。问题是要求这两条路径长度的最大乘积(我晕,product原来还有乘积的意思.....)。总共只有200个点,所以可以枚举所有边的情况,DFS求出每次两条路径的最大乘积,更新proft。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
bool map[222][222];
int n,deep;//deep控制每次遍历一条路径是记录的深度,用于更新maxd1和maxd2
int dfs(int u,int pre)//因为是一条路径,深搜时记录每次搜索点的前驱点
{
    int s=0;
    int maxd1=0,maxd2=0; //代表当前分叉点所得到的最大的两个深度
    for(int i=1;i<=n;i++)
    if(map[u][i]&&i!=pre)
    {
      s=max(dfs(i,u),s);
      if(deep>maxd1)
      {
          maxd2=maxd1;
          maxd1=deep;
      }
      else maxd2=max(deep,maxd2);
    }
    s=max(s,maxd1+maxd2);
    deep=maxd1+1;
    return s;
}
int main()
{
   int u,v;
   while(cin>>n)
   {
       memset(map,0,sizeof(map));
       for(int i=0;i<n-1;i++)
       {
           cin>>u>>v;
           map[u][v]=map[v][u]=true;
       }
        int profit=0;
        for(int i=1; i<=n; i++)
        for(int j=i+1;j<=n;j++)
        {
           if(map[i][j])
           {
               int a=dfs(i,j);
               int b=dfs(j,i);
               profit=max(profit,a*b);
           }
        }
        cout<<profit<<endl;
   }
    return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值