Codeforces 15C Industrial Nim

本文解析了一道关于Nim博弈的编程题目,介绍了如何通过计算每个采石场中特定数量石头的异或值来确定哪位玩家将赢得游戏。文章详细阐述了根据不同条件下石头数量的变化规律,使用异或运算来实现最优策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Industrial Nim
time limit per test
2 seconds
memory limit per test
64 megabytes
input
standard input
output
standard output

There are n stone quarries in Petrograd.

Each quarry owns mi dumpers (1 ≤ i ≤ n). It is known that the first dumper of the i-th quarry has xi stones in it, the second dumper hasxi + 1 stones in it, the third has xi + 2, and the mi-th dumper (the last for the i-th quarry) has xi + mi - 1 stones in it.

Two oligarchs play a well-known game Nim. Players take turns removing stones from dumpers. On each turn, a player can select any dumper and remove any non-zero amount of stones from it. The player who cannot take a stone loses.

Your task is to find out which oligarch will win, provided that both of them play optimally. The oligarchs asked you not to reveal their names. So, let's call the one who takes the first stone «tolik» and the other one «bolik».

Input

The first line of the input contains one integer number n (1 ≤ n ≤ 105) — the amount of quarries. Then there follow n lines, each of them contains two space-separated integers xi and mi (1 ≤ xi, mi ≤ 1016) — the amount of stones in the first dumper of the i-th quarry and the number of dumpers at the i-th quarry.

Output

Output «tolik» if the oligarch who takes a stone first wins, and «bolik» otherwise.

Sample test(s)
input
2
2 1
3 2
output
tolik
input
4
1 1
1 1
1 1
1 1
output
bolik

题意:以前从来没尝试写过博弈,我的处女博弈题啊!T.T比赛的时候没出来......NIM博弈记得只要a1^a2^.....^an=0就可以了,但是这题会卡TLE,太伤了。想了一下,想起之前搞最大流是用过的^运算符,那时是处理两条相反边的,其实就4^1=5,5^1=4,其实就是对于一个偶数n,则n^(n+1)=1,....可是脑子太混乱,没调试出来....

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
    __int64 x,m,ans,i,j,n;
   while(scanf("%I64d",&n)!=EOF)
   {
       ans=0;
       for(i=0;i<n;i++)
       {
           scanf("%I64d%I64d",&x,&m);
           if(x%2)
           {
            if(((m-1)/2)%2)
            {if((m-1)%2)
              ans^=(x^1^(x+m-1));
              else ans^=(x^1);
            }
            else
            {if((m-1)%2)
              ans^=(x^0^(x+m-1));
              else ans^=(x^0);
            }
           }
           else
           {
               if((m/2)%2)
               {
                   if(m%2)
                   ans^=((x+m-1)^1);
                   else ans^=1;
               }
               else
               {
                   if(m%2)
                   ans^=((x-1+m)^0);
                   else ans^=0;
               }
           }
       }
       if(ans==0) puts("bolik");
       else puts("tolik");
   }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值