【C++小白向】LeetCode9. 回文数

博客围绕LeetCode9回文数题目展开,介绍判断整数是否为回文数的问题,给出示例。提出不将整数转字符串的两种解法,分析法一有整数溢出问题,采用法二反转整数后半部分解题,还提及时间和空间复杂度,并给出代码。

LeetCode9. 回文数

题目链接:https://leetcode-cn.com/problems/palindrome-number
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。

示例 1:
输入: 121
输出: true

示例 2:
输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。

示例 3:
输入: 10
输出: false
解释: 从右向左读, 为 01 。因此它不是一个回文数。

进阶:
你能不将整数转为字符串来解决这个问题吗?


题解:
不用字符串有两个方法:1 . 把整数反转后比较是否相等。 2 . 只反转整数后半部分。
法一如果反转后的数字大于 int.MAX,我们将遇到整数溢出问题。如第7题(题解链接:https://blog.youkuaiyun.com/BackingEgg/article/details/110517810)。
法二则能避免溢出问题,所以本题采用此方法,既只反转整数后半部分。

具体如下:
官方题解已经写得非常详细了我不想写了怎么办QAQ
但官方题解又臭又长的小白一定看不下去
反转数字的一半,毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。

时间复杂度:O(logn),对于每次迭代,我们会将输入除以 10。
空间复杂度:O(1)。我们只需要常数空间存放若干变量。

代码如下:

class Solution {
public:
    bool isPalindrome(int x) {
        if(x < 0 || (x % 10 == 0 && x != 0))    return false; //所有负数和个位数为0的数不可能是回文数,应该都懂吧?
        
        int reverseNumber = 0;
        while(x > reverseNumber) { // 这里循环判断是关键,在这里我们能知道反转数字的位数在什么时候已经达到原始数字位数的一半
        // 整个过程我们不断将原始数字除以10,然后给反转后的数字乘上10
        // 所以,当原始数字小于或等于反转后的数字时,就意味着我们已经处理了一半位数的数字了。
            reverseNumber = reverseNumber * 10 + x % 10;
            x /= 10;
        }
        
        // 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
        return reverseNumber == x || reverseNumber/10 == x; // 使用“或”运算,当这两个其中一个为真时,返回true。

    }
};
### LeetCode 第 5 题 &#39;最长回文子串&#39; 的 Python 解法 对于给定字符串 `s`,返回其中的最长回文子串是一个经典算法问题。一种高效的解决方案是利用中心扩展方法来寻找可能的最大长度回文。 #### 中心扩展法解析 该方法基于观察到的一个事实:一个回文串可以由中间向两端不断扩散而得。因此可以从每一个字符位置出发尝试构建尽可能大的回文序列[^1]。 具体来说: - 对于每个字符作为单个字符的中心点; - 或者两个相同相邻字符作为一个整体中心点; - 向两侧延伸直到遇到不匹配的情况为止; 记录下每次找到的有效回文串及其起始索引和结束索引,并更新全局最优解。 下面是具体的 Python 实现代码: ```python def longest_palindrome(s: str) -> str: if not s or len(s) == 0: return "" start, end = 0, 0 for i in range(len(s)): len1 = expand_around_center(s, i, i) len2 = expand_around_center(s, i, i + 1) max_len = max(len1, len2) if max_len > end - start: start = i - (max_len - 1) // 2 end = i + max_len // 2 return s[start:end + 1] def expand_around_center(s: str, left: int, right: int) -> int: L, R = left, right while L >= 0 and R < len(s) and s[L] == s[R]: L -= 1 R += 1 return R - L - 1 ``` 此函数通过遍历整个输入字符串并调用辅助函数 `expand_around_center()` 来计算以当前位置为中心能够形成的最长回文串长度。最终得到的结果即为所求的最大回文子串。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值