TYZ 8/22 人品问题

探讨一种基于遗传原理的人品计算方法,通过选择特定祖先来最大化个体的人品值。介绍了一个具体的算法实现案例,利用树形DP进行高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人品问题

题目描述

网上出现了一种高科技产品——人品测试器。只要你把你的真实姓名输入进去,系统将自动输出你的人品指数。yzx不相信自己的人品为0。经过了许多研究后,yzx得出了一个更为科学的人品计算方法。这种方法的理论依据是一个非常重要的结论:人品具有遗传性。因此,一个人的人品完全由他的祖先决定。yzx提出的人品计算方法相当简单,只需要将测试对象的k个祖先的人品指数(可能为负数)加起来即可。选择哪k个祖先可以由测试者自己决定,但必须要满足这个要求:如果除自己的父母之外的某个祖先被选了,那么他的下一代必需要选(不允许跳过某一代选择更远的祖先,否则将失去遗传的意义)。

非常不幸的是,yzx测试了若干次,他的人品值仍然不能为一个正数。现在yzx需要你帮助他找到选择祖先的最优方案,使得他的人品值最大。

输入格式

第一行是两个用空格隔开的正整数n和k,其中n代表yzx已知的家谱中共有多少人(包括yzx本身在内),k的意义参见问题描述。

第二行有n-1个用空格隔开的整数(可能为负),这些数的绝对值在2^15以内。其中,第i个数表示编号为i+1的人的人品值。我们规定,编号为1的人是yzx。

接下来n行每行有两个用空格隔开的数,其中第i行的两个数分别表示第i个人的父亲和母亲的编号。如果某个人的父亲或母亲不在这个家谱内,则在表示他的父亲或母亲的编号时用0代替。

除yzx以外的所有人都是yzx的祖先,他们都会作为父亲或母亲被描述到。每个人都不可能同时作为多个人的父亲或者是母亲。

输出格式

一个整数,表示yzx能够得到的最大人品值。

输入样例

6 3

-2 3 -2 3 -1

2 3

4 5

0 6

0 0

0 0

0 0

输出样例

4

样例说明

下图显示了输入样例所描述的家谱图。括号里的数表示的是该人的人品值。

 

4(-2)  5(3)  6(-1)

   \   /    /

    \ /     /

   2(-2)   3(3)

      \   /

       \ /

       1<---yzx

 

显然,选择祖先2、3、5能使yzx的人品值达到最大。这个最大值为4,表示yzx能够得到的最大人品值。

数据规模

50%的数据,n<=10。

100%的数据,n<=100。



拿到数据范围之后,首先考虑暴力做法,(暴力做法就是暴利做法啊)

由于只有10个,把其中所有的选出三个的方法都试一遍,并且检验祖先关系,这样子50分就可以到手

正解当然是treedp



#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<limits.h>
using namespace std;
const int maxn=105;
int fr[maxn],mr[maxn];
int rp[maxn];
int n;
int dp[105][105];
bool used[105][105];
int inf=-135451; 
int dfs(int nw,int am)
{
    if(used[nw][am])
    {
	return dp[nw][am]; 
	}	
	//用过了当然不管 
	if(!am)
	{
	return dp[nw][am]=0;
	}
	//没有了,这样子就是0嘛,dp值也是0 
	//不用担心负值,这样子只是不选取的情况 
	if(!nw)
	{
	return dp[nw][am]=inf;
	}
	//到0了,这个不可以到达,所以返回负的无穷大 
	if(am==1)
	{
	return dp[nw][am]=rp[nw];
	}
	//只剩一个了,不用分配,就是rp 
	int cmax=inf;
	for(int i=0;i<am;i++)
	{
		int tmp=rp[nw]+dfs(fr[nw],am-i-1)+dfs(mr[nw],i);
		//给两个节点分配的数量 
		cmax=max(cmax,tmp);
		//最大人品 
	}
	used[nw][am]=1;
	dp[nw][am]=cmax;
	return cmax;
}
int k;
int main()
{
	
	cin>>n>>k;
	for(int i=2;i<=n;i++)
	scanf("%d",&rp[i]);
	for(int i=1;i<=n;i++)
	{
		scanf("%d %d",&fr[i],&mr[i]);
	}
	int ans=dfs(1,k+1);
	cout<<ans<<endl;
 } 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值