题意:
给定n个点的带权有向图,求从1到n的路径中边权之积最小的简单路径。输出它模9987的余数。
题解:
最短路变形,令距离数组dis[start]=1,其他为INF,使用堆优化dijkstra算法,松弛操作变成dis[v]=min{dis[v],dis[u]*E{u,v}};即可。
AC代码:
#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int vis[1005];
long long dis[1005];
struct node
{
int to;
long long cost;
bool operator <(const node &a)const
{
return a.to < this->to;
}
};
vector<node>Edge[1005];
void dijkstra(int n)
{
priority_queue<node>que;
memset(dis, 0x3f3f3f3f3f3f3f3f, sizeof(dis));
memset(vis, 0, sizeof(vis));
dis[1] = 1;
que.push(node{ 1,dis[1] });
while (!que.empty())
{
int u = que.top().to;
que.pop();
if (vis[u])
continue;
vis[u] = 0;
for (int i = 0; i < Edge[u].size(); ++i)
{
int v = Edge[u][i].to;
if (!vis[i] && dis[v] > dis[u] * Edge[u][i].cost)
{
dis[v] = dis[u] * Edge[u][i].cost;
que.push(node{ v, dis[v] });
}
}
}
cout << dis[n] % 9987 << endl;
}
int main()
{
int n, m, a, b, c;
cin >> n >> m;
for (int i = 0; i < m; ++i)
{
cin >> a >> b >> c;
Edge[a].push_back(node{ b,c });
}
dijkstra(n);
return 0;
}