质量声明:原创文章,内容质量问题请评论吐槽。如对您产生干扰,可私信删除。
主要参考:Active Contour Model — skimage v0.16.dev0 docs - scikit-image
skimage实现
函数声明
Active contours by fitting snakes to features of images. Supports single and multichannel 2D images. Snakes can be periodic (for segmentation) or have fixed and/or free ends. The output snake has the same length as the input boundary. As the number of points is constant, make sure that the initial snake has enough points to capture the details of the final contour.
active_contour(image, snake, alpha=0.01, beta=0.1, w_line=0, w_edge=1, gamma=0.01,
bc='periodic', max_px_move=1.0, max_iterations=2500, convergence=0.1)
Parameters
----------
image : (N, M) or (N, M, 3) ndarray
Input image.
snake : (N, 2) ndarray
Initial snake coordinates. For periodic boundary conditions, endpoints
must not be duplicated.
alpha : float, optional
Snake length shape parameter. Higher values makes snake contract
faster.
beta : float, optional
Snake smoothness shape parameter. Higher values makes snake smoother.
w_line : float, optional
Controls attraction to brightness. Use negative values to attract toward
dark regions.
w_edge : float, optional
Controls attraction to edges. Use negative values to repel snake from
edges.
gamma : float, optional
Explicit time stepping parameter.
bc : {'periodic', 'free', 'fixed'}, optional
Boundary conditions for worm. 'periodic' attaches the two ends of the
snake, 'fixed' holds the end-points in place, and 'free' allows free
movement of the ends. 'fixed' and 'free' can be combined by parsing
'fixed-free', 'free-fixed'. Parsing 'fixed-fixed' or 'free-free'
yields same behaviour as 'fixed' and 'free', respectively.
max_px_move : float, optional
Maximum pixel distance to move per iteration.
max_iterations : int, optional
Maximum iterations to optimize snake shape.
convergence: float, optional
Convergence criteria.
Returns
-------
snake : (N, 2) ndarray
Optimised snake, same shape as input parameter.
References
----------
.. [1] Kass, M.; Witkin, A.; Terzopoulos, D. "Snakes: Active contour
models". International Journal of Computer Vision 1 (4): 321
(1988). DOI:`10.1007/BF00133570`
代码示例
import numpy as np
from matplotlib import pyplot as plt
from skimage.color import rgb2gray
from skimage import data
from skimage.filters import gaussian
from skimage.segmentation import active_contour
img = data.astronaut() # 读入图像
img = rgb2gray(img) # 灰度化
# 圆的参数方程:(220, 100) r=100
t = np.linspace(0, 2*np.pi, 400) # 参数t, [0,2π]
x = 220 + 100*np.cos(t)
y = 100 + 100*np.sin(t)
# 构造初始Snake
init = np.array([x, y]).T # shape=(400, 2)
# Snake模型迭代输出
snake = active_contour(gaussian(img,3), snake=init, alpha=0.1, beta=1, gamma=0.01, w_line=0, w_edge=10)
# 绘图显示
plt.figure(figsize=(5, 5))
plt.imshow(img, cmap="gray")
plt.plot(init[:, 0], init[:, 1], '--r', lw=3)
plt.plot(snake[:,

本文介绍使用Skimage和Numpy库实现Snake模型进行图像分割的方法。Snake模型是一种活动轮廓模型,适用于2D单通道或多通道图像的分割。通过调整长度、平滑度、亮度吸引和边缘吸引等参数,Snake模型可以捕捉图像特征并拟合轮廓。文中提供了详细的函数参数说明、代码示例及结果展示。
最低0.47元/天 解锁文章
2266

被折叠的 条评论
为什么被折叠?



