【题意】对无向图的补图求最短路
BFS:
维护一个set,里面保存还没有被访问的节点,每次bfs的时候,把与点u相连的点排除,那么剩余的点在补图里都与点u可以有一条权为1的边,访问完之后即把这些点从set里删除。也就是说扩展节点时候,只扩展与u没有边相连的点,有相边相邻的点留在外面等下一次再扩展。
【代码】
#include<stdio.h>
#include<stdlib.h>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<algorithm>
using namespace std;
const int MAXN = 2e5 + 5;
const int INF = 0x3f3f3f3f;
typedef long long LL;
int head[MAXN], e;
LL dis[MAXN];
int vis[MAXN];
struct Edge{
int v, nxt, w;
}E[MAXN];
int N, M, S;
void init()
{
e = 1;
memset(head, 0, (N + 1) * sizeof(int));
memset(vis, 0, (N + 1) * sizeof(int));
}
void add(int u, int v, int w)
{
E[e].v = v;
E[e].w = w;
E[e].nxt = head[u];
head[u] = e++;
}
struct QNode{
int v, c;
QNode(int _v, int _c){
v = _v; c = _c;
}
bool operator < (const QNode &a) const{
return c>a.c;
}
};
void BFS(int st, int n)
{
set<int>ta, tb; //维护一个未BFS的集合,tb是temp
queue<int>Q;
Q.push(st);
dis[st] = 0;
for (int i = 1; i <= n; i++) //初始化
if (i != st)
ta.insert(i);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; i; i = E[i].nxt){ //把和u之间有边的点排除
int v = E[i].v;
if (!ta.count(v)) continue;
ta.erase(v);
tb.insert(v);
}
for (set<int>::iterator it = ta.begin(); it != ta.end(); it++){ //扩展
Q.push(*it);
dis[*it] = dis[u] + 1;
}
ta.swap(tb); //原ta里面除了tb里的没访问之外都访问了
tb.clear();
}
}
int main(void) {
int T;
while (scanf("%d", &T) != EOF)
{
int i;
int u, v;
for (; T; T--)
{
scanf("%d%d", &N, &M);
init();
for (i = 1; i <= M; i++)
{
scanf("%d%d", &u, &v);
add(u, v, 1);
add(v, u, 1);
}
for (i = 1; i <= N; i++)
{
dis[i] = INF;
}
scanf("%d", &S);
BFS(S, N);
bool first = true;
for (i = 1; i <= N; i++)
{
if (i == S)
continue;
if (false == first)
printf(" ");
first = false;
if (dis[i] == INF)
printf("-1");
else
printf("%d", dis[i]);
}
printf("\n");
}
}
return 0;
}