要求最大值最小,不难想到使用二分法。我们每次二分一个“最大的D”,然后将大于D的边舍去,然后看一下去边后的图有多少个连通分量。连通分量的数目就是增配卫星电话的数目。
至于求连通分量数目我们可以使用并查集。
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
#define MaxP 505
int S, P;
struct NODE{
double x, y;
}node[MaxP];
struct EDGE{
int x, y, f;
double w;
}edge[MaxP*MaxP];
int m;
bool cmp(EDGE a, EDGE b){
return a.w < b.w;
}
double distance(int x, int y){
double tmp = (double)(node[x].x-node[y].x)*(node[x].x-node[y].x);
tmp += (double)(node[x].y-node[y].y)*(node[x].y-node[y].y);
tmp = sqrt(tmp);
return tmp;
}
int fa[MaxP];
int find(int x){
return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
bool flag[MaxP];
bool check(int d){
for(int i = 1; i<=P; ++i) fa[i] = i;
for(int i = 1; i<=d; ++i){
int fx = find(edge[i].x);
int fy = find(edge[i].y);
if(fx == fy) continue;
fa[fx] = fy;
}
for(int i = 1; i<=P; ++i) flag[i] = false;
for(int i = 1; i<=P; ++i) flag[find(i)] = true;
int cnt = 0;
for(int i = 1; i<=P; ++i) if(flag[i]) ++cnt;
if(cnt<=S) return true;
return false;
}
int main(){
scanf("%d %d", &S, &P);
for(int i = 1; i<=P; ++i) scanf("%lf %lf", &node[i].x, &node[i].y);
for(int i = 1; i<=P; ++i)
for(int j = i+1; j<=P; ++j){
edge[++m].x = i;
edge[m].y = j;
edge[m].w = distance(i, j);
}
sort(edge+1, edge+1+m, cmp);
int l = 1, r = m, mid, ans;
while(l<=r){
mid = (l+r)>>1;
if(check(mid)) ans = mid, r = mid-1;
else l = mid+1;
}
printf("%.2lf\n", edge[ans].w);
return 0;
}