【DFS】LeetCode 39. Combination Sum

本文深入解析了LeetCode第39题“组合总和”的解决方案,采用深度优先搜索(DFS)策略,通过递归实现所有可能的组合,以找到目标数值的所有加和组合方式。代码示例清晰展示了如何利用DFS遍历和回溯解决此类问题。

LeetCode 39. Combination Sum

Solution1:
DFS,这个套路要熟记啊!

class Solution {
public:
    vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
        vector<vector<int> > res;
        vector<int> out;
        sort(candidates.begin(), candidates.end());
        combinationSumDFS(candidates, target, 0, out, res);
        return res;
    }
    void combinationSumDFS(vector<int> &candidates, int target, 
                           int start, vector<int> &out, vector<vector<int> > &res) {
        if (target < 0) return;
        else if (target == 0) res.push_back(out);
        else {
            for (int i = start; i < candidates.size(); ++i) {
                out.push_back(candidates[i]);
                combinationSumDFS(candidates, target - candidates[i], i, out, res);
                out.pop_back();
            }
        }
    }
};
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
你提供的代码是 **LeetCode39题:组合总和(Combination Sum)** 的官方题解,使用 **深度优先搜索(DFS)+ 回溯** 的方式,找出所有和为 `target` 的组合。 --- ## ✅ 代码解析与完整 VS2022 可运行版本 以下是适合在 **Visual Studio 2022 (VS2022)** 中运行的完整代码版本,包含 `vector`、主函数和测试用例。 ```cpp #include <iostream> #include <vector> using namespace std; class Solution { public: void dfs(vector<int>& candidates, int target, vector<vector<int>>& ans, vector<int>& combine, int idx) { if (idx == candidates.size()) { return; } if (target == 0) { ans.emplace_back(combine); return; } // 直接跳过当前元素 dfs(candidates, target, ans, combine, idx + 1); // 选择当前元素(可重复选择) if (target - candidates[idx] >= 0) { combine.emplace_back(candidates[idx]); dfs(candidates, target - candidates[idx], ans, combine, idx); // 同一位置可重复选 combine.pop_back(); } } vector<vector<int>> combinationSum(vector<int>& candidates, int target) { vector<vector<int>> ans; vector<int> combine; dfs(candidates, target, ans, combine, 0); return ans; } }; // 打印结果的辅助函数 void printResult(const vector<vector<int>>& result) { cout << "[\n"; for (const auto& combination : result) { cout << " ["; for (size_t i = 0; i < combination.size(); ++i) { cout << combination[i]; if (i != combination.size() - 1) cout << ", "; } cout << "]\n"; } cout << "]\n"; } // 主函数测试 int main() { Solution sol; vector<int> candidates; int target; // 测试用例 1 candidates = {2, 3, 6, 7}; target = 7; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; // 测试用例 2 candidates = {2, 3, 5}; target = 8; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; // 测试用例 3 candidates = {1}; target = 1; cout << "输入数组: "; for (int num : candidates) cout << num << " "; cout << "\n目标值: " << target << endl; cout << "所有组合总和为 " << target << " 的集合为:\n"; printResult(sol.combinationSum(candidates, target)); cout << endl; return 0; } ``` --- ## ✅ 示例输出 ``` 输入数组: 2 3 6 7 目标值: 7 所有组合总和为 7 的集合为: [ [2, 2, 3] [7] ] 输入数组: 2 3 5 目标值: 8 所有组合总和为 8 的集合为: [ [2, 2, 2, 2] [2, 3, 3] [3, 5] ] 输入数组: 1 目标值: 1 所有组合总和为 1 的集合为: [ [1] ] ``` --- ## ✅ 算法逻辑详解 ### ✅ 问题背景 给定一个无重复元素的数组 `candidates` 和一个目标值 `target`,找出所有满足 `元素和等于 target` 的组合。 ### ✅ 解法思路 使用 **DFS + 回溯**: 1. **递归终止条件**: - `target == 0`:找到一个有效组合 - `idx == candidates.size()`:超出数组范围,返回 2. **两种选择**: - **不选当前元素**:`dfs(candidates, target, ans, combine, idx + 1)` - **选当前元素**:将 `candidates[idx]` 加入组合,递归调用自身 `idx` 不变(表示可以重复选择) 3. **回溯操作**: - 每次递归完成后,使用 `combine.pop_back()` 恢复现场 --- ## ✅ 时间与空间复杂度 | 类型 | 复杂度 | 说明 | |------|--------|------| | 时间复杂度 | O(N * 2^N) | 每个元素可选或不选,最多 2^N 个组合,每个组合拷贝需要 O(N) | | 空间复杂度 | O(N) | 递归栈深度和临时组合数组最大长度为 N | --- ## ✅ 常见问题排查(VS2022) 1. **编译错误** - 确保包含 `<vector>` 和 `<iostream>` - 使用 `using namespace std;` 或加上 `std::` 前缀 2. **运行时错误** - 注意数组为空、target 为 0 等边界情况 3. **逻辑错误** - `combine.pop_back()` 必须放在递归之后 - 注意 `target - candidates[idx] >= 0` 的判断,防止负数 --- ## ✅ 对比其他解法 | 解法 | 时间复杂度 | 空间复杂度 | 特点 | |------|------------|------------|------| | DFS + 回溯(当前方法) | O(N * 2^N) | O(N) | 通用性强,适合组合问题 | | BFS | O(N * 2^N) | O(N * 2^N) | 需要额外队列,空间更大 | | 动态规划 | O(N * target) | O(N * target) | 适用于可重复子问题 | ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值