LeetCode 67. Add Binary

本文提供了一种解决LeetCode第67题Add Binary的有效方法。通过迭代两个二进制字符串,该算法能正确地计算出它们相加后的二进制结果。时间复杂度和空间复杂度均为O(max{m,n}

LeetCode 67. Add Binary

Solution1:我的答案
时间复杂度为O(max{m,n})O(max{m,n}),空间复杂度亦是如此

class Solution {
public:
    string addBinary(string a, string b) {
        int m = a.size() - 1, n = b.size() - 1;
        string res = "";
        int sum = 0, carry = 0;
        char temp1, temp2;
        while (m >=0 || n >= 0) {
            if (m < 0) temp1 = '0';
            else temp1 = a[m];
            if (n < 0) temp2 = '0';
            else temp2 = b[n];
            sum = (temp1 - '0') + (temp2 - '0') + carry;
            carry = sum / 2;
            res = char(sum % 2 + '0') + res;
            m--;n--;
        }
        if (carry == 1)
            res = char(1 + '0') + res;
        return res;
    }
};
【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练与分类,实现对不同类型扰动的自动识别与准确区分。该方法充分发挥DWT在信号去噪与特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度与鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测与分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性与效率,为后续的电能治理与设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程与特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值