力扣,https://leetcode.cn/problems/zui-xiao-de-kge-shu-lcof/description/
最大堆比较好,快排思想太麻烦!不容易bugFree
Python
python中heapq默认是最小堆,最大堆将push的元素取负数。
class Solution:
def inventoryManagement(self, stock: List[int], cnt: int) -> List[int]:
res = list()
for item in stock:
if len(res) < cnt:
heapq.heappush(res, -item)
else:
heapq.heappushpop(res, -item)
return [-x for x in res]
Java
class Solution {
public int[] inventoryManagement(int[] stock, int cnt) {
if (cnt == 0) {
return new int[0];
}
PriorityQueue<Integer> q = new PriorityQueue<Integer>((a, b) -> b - a); // 大根堆
for (int i = 0; i < cnt; ++i) {
q.offer(stock[i]);
}
for (int i = cnt; i < stock.length; ++i) {
if (q.peek() > stock[i]) {
q.poll();
q.offer(stock[i]);
}
}
int[] res = new int[cnt];
for (int i = 0; i < cnt; ++i) {
res[i] = q.poll();
}
return res;
}
}
##Solution1:
菜鸟做法,排序后挑选前k个数。复杂度为
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)
排序可以自己手撸快排代码,或者利用库函数sort(),这里为了省劲就用sort()了。。。
class Solution {
public:
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
vector<int> res;
int n = input.size();
if (n < k) return res;
else {
sort(input.begin(),input.end());
for(int i = 0; i < k; i++)
res.push_back(input[i]);
return res;
}
}
};
##Solution2:
利用快排中Partition()函数,时间复杂度
O
(
n
)
O(n)
O(n),这种思路的限制是需要修改输入的数组。
20180904重做。
class Solution {
public:
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
if (!k || k < 0 || input.size() < k) return {};
int start = 0, end = input.size() - 1;
int index = Partition(input, start, end);
while (index != k - 1) {
if (index < k - 1) {
start = index + 1;
index = Partition(input, start, end);
} else if (index > k - 1) {
end = index - 1;
index = Partition(input, start, end);
}
}
return vector<int> (input.begin(), input.begin() + k);
}
int Partition(vector<int> &input, int begin, int end) {
if (begin >= end) return begin;
int refer = input[end];
int tail = begin; //tail是返回的索引
for (int i = begin; i < end; i++) {
if (input[i] <= refer)
my_swap(input, i, tail++);
}
my_swap(input, tail, end);
return tail;
}
void my_swap(vector<int> &input, int i, int j) {
int temp = input[i];
input[i] = input[j];
input[j] = temp;
return;
}
};
##Solution3:
利用最大堆,时间复杂度
O
(
n
l
o
g
k
)
O(nlogk)
O(nlogk),特别适合处理海量数据。但最大堆实现起来很麻烦。可以利用C++中的set和multiset,这俩容器是基于红黑树实现,在红黑树中的插入、删除和查找也是只需要
O
(
l
o
g
k
)
O(logk)
O(logk)的时间,代码如下:
这个好处是不需要改变原始数组内容。
class Solution {
public:
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
vector<int> result;
if (input.empty() || k<1 || input.size() < k)
return result;
multiset<int> insert_set;//重复的元素也可以同时返回多个
for (int i = 0; i < input.size(); i++) {
if (i < k) {
insert_set.insert(input[i]);
} else {
auto rit = insert_set.rbegin();
if (input[i] < *rit){
insert_set.erase(*rit);
insert_set.insert(input[i]);
}
}
}
return vector<int> (insert_set.begin(), insert_set.end());
}
};