法1:DP
基础算法,必须掌握!!!
Python
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
m, n = len(text1), len(text2)
dp = [[0]*(n+1) for _ in range(m+1)] # dp[i][j]表示前i/j个公共长度
for i in range(1, m+1):
for j in range(1, n+1):
if text1[i-1] == text2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i][j-1], dp[i-1][j])
return dp[m][n]
Java
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length() + 1, n = text2.length() + 1;
int[][] dp = new int[m][n];
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m - 1][n - 1];
}
}