Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
class Solution {
public:
int maxSubArray(int A[], int n) {
int max = A[0],s = A[0];
for (int i = 1; i < n; i++)
{
if(s < 0)
{
s = A[i];
}
else
{
s += A[i];
}
if(max < s)
{
max = s;
}
}
#if 0
std::cout << max << std::endl;
#endif // 1
return max;
}
};