题目大意
给定平面上的n个点,每个点有
输出2n⋅E[x] % (1e9+7)
Data Constraint
n≤2000
题解
可以发现,题目就是叫我们求所有可能的凸包的方案数之和。
首先可以发现凸包上点的数量与边的数量是相等的,所以可以求边的方案。我们先枚举一个点i,以这一点作为基点做一次极角排序。然后枚举一个点
现在要处理重点和共线的情况。重点比较简单直接乘上2x,共线的情况就维护四个指针处理一下。
时间复杂度:O(n2logn)
SRC
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std ;
#define N 2000 + 10
typedef long long ll ;
const int MO = 1e9 + 7 ;
const int Ni = 5e8 + 4 ;
struct Point {
int x , y ;
Point ( int X = 0 , int Y = 0 ) { x = X , y = Y ; }
} P[N] , tp[N] ;
map < Point , int > tot ;
ll tab[N] ;
int n ;
ll ans , Rec ;
Point operator - ( Point a , Point b ) { return Point( a.x - b.x , a.y - b.y ) ; }
ll operator * ( Point a , Point b ) { return (ll)a.x * b.x + (ll)a.y * b.y ; }
bool operator < ( Point a , Point b ) { return a.x < b.x || (a.x == b.x && a.y < b.y ) ; }
bool operator == ( Point a , Point b ) { return a.x == b.x && a.y == b.y ; }
ll cross( Point a , Point b ) { return (ll)a.x * b.y - (ll)a.y * b.x ; }
int Get( Point a ) {
if ( a.x > 0 && !a.y ) return 1 ;
if ( !a.x && a.y > 0 ) return 3 ;
if ( a.x < 0 && !a.y ) return 5 ;
if ( !a.x && a.y < 0 ) return 7 ;
if ( a.x > 0 && a.y > 0 ) return 2 ;
if ( a.x < 0 && a.y > 0 ) return 4 ;
if ( a.x < 0 && a.y < 0 ) return 6 ;
if ( a.x > 0 && a.y < 0 ) return 8 ;
return 9 ;
}
bool cmp( Point a , Point b ) {
if ( Get(a) != Get(b) ) return Get(a) > Get(b) ;
return cross( a , b ) < 0 ;
}
int main() {
scanf( "%d" , &n ) ;
tab[0] = 1 ;
for (int i = 1 ; i <= n ; i ++ ) tab[i] = tab[i-1] * 2 % MO ;
for (int i = 1 ; i <= n ; i ++ ) scanf( "%d%d" , &P[i].x , &P[i].y ) ;
for (int i = 1 ; i <= n ; i ++ ) {
int Cnt = 0 , SameNum = 0 ;
for (int j = 1 ; j <= n ; j ++ ) {
if ( P[i] == P[j] ) {
if ( j > i ) SameNum ++ ;
continue ;
}
tp[++Cnt] = P[j] - P[i] ;
}
sort( tp + 1 , tp + Cnt + 1 , cmp ) ;
int h1 = 1 , t1 = 0 , h2 = 1 , t2 = 1 ;
while ( t1 < Cnt ) {
h1 = ++ t1 ;
while ( t1 < Cnt && !cross( tp[h1] , tp[t1+1] ) && tp[h1] * tp[t1+1] > 0 ) t1 ++ ;
if ( h2 >= h1 && h2 <= t1 ) h2 = t1 % Cnt + 1 ;
while ( cross( tp[h1] , tp[h2] ) < 0 ) h2 = h2 % Cnt + 1 ;
t2 = h2 ;
int Up = 0 , Down = (h2 - t1 - 1 + Cnt) % Cnt , SameLine = t1 - h1 + 1 ; ;
if ( !cross( tp[h1] , tp[h2] ) && tp[h1] * tp[h2] < 0 ) {
while ( !cross( tp[h2] , tp[t2%Cnt+1] ) && tp[h2] * tp[t2%Cnt+1] > 0 ) t2 = t2 % Cnt + 1 ;
Up = (h1 - t2 - 1 + Cnt) % Cnt ;
} else Up = Cnt - SameLine - Down ;
ans = (ans + tab[SameNum] * (tab[SameLine] - 1) % MO * tab[Up] % MO ) % MO ;
ans = (ans + tab[SameNum] * (tab[SameLine] - 1) % MO * ((tab[Down] - 1 + MO) % MO) % MO ) % MO ;
Rec = (Rec + tab[SameNum] * (tab[SameLine] - 1 + MO) % MO) % MO ;
}
}
ans = (ans + Rec) % MO * Ni % MO ;
for (int i = 1 ; i <= n ; i ++ ) {
ans = (ans + tab[tot[P[i]]]) % MO ;
tot[P[i]] ++ ;
}
printf( "%lld\n" , ans ) ;
return 0 ;
}
以上.