可以参考原作者:https://github.com/ChenYingpeng/darknet2caffe
一、环境
Python2.7
Caffe
Pytorch >= 0.40
二、caffe参数配置
1. caffe_layers/mish_layer/mish_layer.hpp,caffe_layers/upsample_layer/upsample_layer.hpp into include/caffe/layers/.
2. Copy caffe_layers/mish_layer/mish_layer.cpp mish_layer.cu,caffe_layers/upsample_layer/upsample_layer.cpp upsample_layer.cu into src/caffe/layers/.
3. Copy caffe_layers/pooling_layer/pooling_layer.cpp into src/caffe/layers/.Note:only work for yolov3-tiny,use with caution.
4. Add below code into src/caffe/proto/caffe.proto.
// LayerParameter next available layer-specific ID: 147 (last added: recurrent_param)
message LayerParameter {
optional TileParameter tile_param = 138;
optional VideoDataParameter video_data_param = 207;
optional WindowDataParameter window_data_param = 129;
++optional UpsamplePara

本文介绍如何将YOLOv3和YOLOv4模型转换为Caffe框架下可用的格式,包括环境配置、参数设置、模型转换及验证等步骤。通过调整Caffe源代码并重新编译,使Caffe支持YOLOv3和YOLOv4特有的层。
最低0.47元/天 解锁文章
475

被折叠的 条评论
为什么被折叠?



