--darknet 转战 caffe--
-
darknet的cfg文件转换成caffe的prototxt文件
> 卷积层重写:
# darknet 的cfg文件
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# caffe的prototxt书写
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "batch_norm1"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
batch_norm_param {
use_global_stats: false
}
include {
phase: TRAIN
}
}
layer {
name: "batch_norm1"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
batch_norm_param {
u

博客详细介绍了如何将Darknet的配置文件转换为Caffe的prototxt文件,特别是卷积层的转换。在Caffe中,Darknet的批量归一化(batch_normalize)被拆分为BatchNorm和Scale两层,分别对应训练和测试阶段。BatchNorm用于标准化特征,Scale则用于调整比例和偏置。这一转换对于理解跨框架的模型迁移和优化过程至关重要。
最低0.47元/天 解锁文章
2271

被折叠的 条评论
为什么被折叠?



