【AI理论学习】深入理解扩散模型:Diffusion Models(DDPM)(理论篇)

本文深入探讨扩散模型(Diffusion Models),包括前向扩散和反向生成过程,以及DDPM的原理和优化目标。与GAN相比,扩散模型训练更稳定,能生成多样样本。文章还介绍了模型设计、代码实现,并提及Stable Diffusion、DALL-E、Imagen等应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文综合最近阅读的关于扩散模型的一些基础博客和文章整理而成。主要参考的内容来自 Calvin Luo 的论文,针对的对象主要是对扩散模型已经有一些基础了解的读者。

引言

继OpenAI在2021提出的文本转图像模型DALLE之后,越来越多的大公司卷入这个方向,例如谷歌相继推出了ImagenParti。一些主流的文本转图像模型,例如DALL·E 2stable-diffusionImagen采用了扩散模型(Diffusion Model)作为图像生成模型,这也引发了对扩散模型的研究热潮。

与GAN相比,扩散模型训练更稳定,而且能够生成更多样的样本,OpenAI的论文Diffusion Models Beat GANs on Image Synthesis也证明了<font color='red>扩散模型能够超越GAN。
Diffusion Models Beat GANs on Image Synthesis
论文地址&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值