最新最全论文合集——强化学习在自然语言处理中的应用

本文介绍了AMiner平台上的深度强化学习论文集,聚焦深度学习与强化学习的最新进展,尤其关注在自然语言处理中RL的应用。核心论文'Introduction to Reinforcement Learning'引用广泛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AMiner平台(https://www.aminer.cn)由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

必读论文:https://www.aminer.cn/topic

论文集地址:https://www.aminer.cn/topic/606969cb92c7f9be214ab92e

近几年,深度学习和强化学习中一些先进方法的出现使得两者的结合成为可能,其产物就是深度强化学习。深度强化学习既有继承于深度学习的强泛化和自特征提取能力,又可以像强化学习方法一样,使智能系统通过自我的试错在给定环境中学习解决特定任务的策略。而最近在自然语言处理方面,主要方向是利用RL辅助学习语义向量,再使用下游任务进行评估和用RL对模型进行微调。

该论文集共收录28篇论文,引用最多的论文为Introduction to Reinforcement Learning,引用数为6862。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

AMiner,一个具有认知智能的学术搜索引擎:https://www.aminer.cn

#AMiner# #论文#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值