视频编辑最新SOTA!港中文&Adobe等发布统一视频生成传播框架——GenProp

文章链接:https://arxiv.org/pdf/2412.19761
项目链接:https://genprop.github.io

亮点直击

  • 定义了一个新的生成视频传播问题,目标是利用 I2V 模型的生成能力,将视频第一帧的各种变化传播到整个视频中。

  • 精心设计了模型 GenProp,包含选择性内容编码器(Selective Content Encoder, SCE)、专用损失函数以及mask预测头,并提出了一个用于训练模型的合成数据生成pipeline。

  • 本文的模型支持多种下游应用,如移除、插入、替换、编辑和跟踪。实验还表明,即使没有特定任务的数据进行训练,模型也能支持视频扩展(outpainting)。

  • 实验结果显示,本文的模型在视频编辑和对象移除任务中优于 SOTA 方法,同时扩展了包括跟踪在内的现有任务范围。

总结速览

解决的问题
当前大规模视频生成模型在处理各种视频编辑任务时,往往聚焦于单一任务(如视频修复、外观编辑、对象插入等),而传统的视频传播方法(如光流或深度传播)易受错误积累影响,缺乏鲁棒性和泛化能力。现有方法还需要密集标注或专门针对任务进行重新训练,流程复杂且效率较低。

提出的方案

  • 框架设计:提出了一个统一的视频生成传播框架——GenProp。
    • 使用选择性内容编码器(Selective Content Encoder, SCE)对原视频的未变部分进行编码。

    • 使用图像到视频生成模型(Image-to-Video, I2V)将第一帧的编辑传播至整段视频。

  • 损失函数设计:引入区域感知损失(region-aware loss),确保SCE只编码未编辑区域的内容,同时优化I2V模型在修改区域的生成能力。

  • 数据生成方案:利用实例级视频分割数据集生成合成数据,覆盖多种视频任务。

应用的技术

  • 生成模型:通过 I2V 生成模型进行内容传播,无需依赖光流或运动预测。

  • 辅助训练模块:加入辅助解码器预测修改区域,以提高编辑区域的生成质量。

  • 选择性编码:通过区域感知机制,减少对已修改区域的编码干扰,增强未编辑内容的保真度。

达到的效果

  • 编辑:支持对对象形状进行显著修改。

  • 插入:插入的对象能够独立运动。

  • 移除:可有效移除阴影、反射等对象效果。

  • 跟踪:能够精确跟踪对象及其相关效果。

  • 统一性:无需密集标注或任务特定的重新训练,简化了编辑流程。

方法

生成视频传播面临以下关键挑战:

  • 真实性 – 第一帧中的变化应自然传播到后续帧中。

  • 一致性 – 所有其他区域应与原始视频保持一致。

  • 通用性 – 模型应具有足够的通用性,适用于多种视频任务。

在 GenProp 中,通过 I2V 生成模型解决 真实性(1);引入选择性内容编码器和掩膜预测解码器,并使用区域感知损失进行训练以解决 一致性(2);通过数据生成方案和通用 I2V 模型

内容概要:本文详细阐述了DeepSeek大模型在服装行业的应用方案,旨在通过人工智能技术提升服装企业的运营效率和市场竞争力。文章首先介绍了服装行业的现状与挑战,指出传统模式难以应对复杂的市场变化。DeepSeek大模型凭借其强大的数据分析和模式识别能力,能够精准预测市场趋势、优化供应链管理、提升产品设计效率,并实现个性化推荐。具体应用场景包括设计灵感生成、自动化设计、虚拟试衣、需求预测、生产流程优化、精准营销、智能客服、用户体验提升等。此外,文章还探讨了数据安全与隐私保护的重要性,以及技术实施与集成的具体步骤。最后,文章展望了未来市场扩展和技术升级的方向,强调了持续优化和合作的重要性。 适用人群:服装行业的企业管理层、技术负责人、市场和销售团队、供应链管理人员。 使用场景及目标:①通过市场趋势预测和用户偏好分析,提升设计效率和产品创新;②优化供应链管理,减少库存积压和生产浪费;③实现精准营销,提高客户满意度和转化率;④通过智能客服和虚拟试衣技术,提升用户体验;⑤确保数据安全和隐私保护,建立用户信任。 阅读建议:此资源不仅涵盖技术实现的细节,还涉及业务流程的优化和管理策略的调整,建议读者结合实际业务需求,重点关注与自身工作相关的部分,并逐步推进技术的应用和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值