[hdu 4417 Super Mario] 主席树+离散化 OR 分块
题目链接:[hdu 4417 Super Mario]
题意描述:给定
N
个数
解题思路:
方法一: 主席树
首先,原序列长度比较小,数值范围很大,对
an
序列进行离散化,因为后面要用到线段树。
然后就差不多是主席树模板题。第
i
个线段树记录前
下面我解释一下为什么一般主席树都是开20倍。主席树的空间复杂度计算:原树需要节点数为
3∗N
, 然后需要新增的节点数为
N∗log2N
,因此空间复杂度(总共节点数目)就是
O(3∗N+N∗log2N)
, 一般的N 都是
30000~100000
,对应的
log2(N)
就是
15~17
, 所以我们一般都是开
17+3=20
倍大小。
方法二:分块
分块更简单。
将
N
个数字分成
实现代码:
/**
* 主席树
* /
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define FIN freopen("input.txt","r",stdin)
#define FOUT freopen("output.txt","w",stdout)
#define fst first
#define snd second
#define __mid__ int mid = ((l + r) >> 1)
#define rep(i, f, t) for(int i = (f); i <= (t); i++)
typedef __int64 LL;
typedef unsigned __int64 ULL;
typedef pair<int, int> PII;
const int MAXN = 1e5 + 5;
const LL INF = (1 << 60);
int T, N, M, cas;
LL A[MAXN], F[MAXN];
int FSZ, TSZ;
struct TNode {
int ls, rs, sum;
TNode() {}
TNode(int ls, int rs, int sum) : ls(ls), rs(rs), sum(sum) {}
} node[MAXN * 20];
int root[MAXN], RSZ;
int Hash(LL x) {
return lower_bound(F, F + FSZ, x) - F + 1;
}
int build(int l, int r) {
int rt = TSZ ++;
node[rt].sum = 0;
if(l == r)
return rt;
__mid__;
node[rt].ls = build(l, mid);
node[rt].rs = build(mid + 1, r);
return rt;
}
int update(int pos, int prt, int l, int r) {
int rt = TSZ ++;
node[rt] = TNode(node[prt].ls, node[prt].rs, node[prt].sum + 1);
if(l == r) return rt;
__mid__;
if(pos <= mid) node[rt].ls = update(pos, node[prt].ls, l, mid);
else node[rt].rs = update(pos, node[prt].rs, mid + 1, r);
return rt;
}
int query(int r1, int r2, int pos, int l, int r) {
int ret = 0;
if(l == r) return node[r2].sum - node[r1].sum;
__mid__;
if(pos <= mid) {
ret += query(node[r1].ls, node[r2].ls, pos, l, mid);
} else {
ret += node[node[r2].ls].sum - node[node[r1].ls].sum;
ret += query(node[r1].rs, node[r2].rs, pos, mid + 1, r);
}
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif // ONLINE_JUDGE
cas = 0;
scanf("%d", &T);
while(T --) {
scanf("%d %d", &N, &M);
for(int i = 0; i < N; i++) {
scanf("%I64d", &A[i]);
F[i] = A[i];
}
RSZ = TSZ = 0;
sort(F, F + N);
FSZ = unique(F, F + N) - F;
F[FSZ ++] = INF;
root[RSZ ++] = build(1, FSZ); ///
for(int i = 0; i < N; i++) {
int x = Hash(A[i]);
root[i + 1] = update(x, root[i], 1, FSZ); ///
}
int L, R;
LL H;
printf("Case %d:\n", ++ cas);
while(M --) {
scanf("%d %d %I64d", &L, &R, &H);
/// int x = Hash(H);
int x = upper_bound(F, F + FSZ, H) - F;
L ++, R ++;
int ans = 0;
if(x > 0)
ans = query(root[L - 1], root[R], x, 1, FSZ); ///
printf("%d\n", ans);
}
}
return 0;
}
/**
* 分块
* /
#include <bits/stdc++.h>
using namespace std;
typedef __int64 LL;
typedef pair<int, int> PII;
const int MAXN = 1e5 + 5;
int N, M;
int A[MAXN], B[MAXN];
int block, num, F[MAXN];
int L[MAXN], R[MAXN];
int calc(int a, int b, int val) {
int ret = 0;
if(F[a] == F[b]) {
for(int i = a; i <= b; i++) {
if(A[i] <= val) ret ++;
}
return ret;
}
int lb, ub;
if(a % num == 1) lb = L[F[a]];
else lb = L[F[a] + 1];
if(b % num == 0) ub = R[F[b]];
else ub = R[F[b] - 1];
for(int i = a; i < lb; i++) {
if(A[i] <= val) ret ++;
}
for(int i = lb; i < ub; i += num) {
int x = upper_bound(B + L[F[i]], B + R[F[i]] + 1, val) - (B + L[F[i]]);
ret += x;
}
for(int i = ub + 1; i <= b; i++) {
if(A[i] <= val) ret ++;
}
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif // ONLINE_JUDGE
int _, cas = 0;
scanf("%d", &_);
while(_ --) {
scanf("%d %d", &N, &M);
num = sqrt(N) + 1; block = N / num + 1;
for(int i = 1; i <= N; i++) {
scanf("%d", &A[i]);
B[i] = A[i];
F[i] = (i - 1) / num + 1;
}
for(int k = 1; k <= block; k++) {
L[k] = (k - 1) * num + 1;
R[k] = min(k * num, N);
sort(B + L[k], B + R[k] + 1);
}
printf("Case %d:\n", ++ cas);
while(M --) {
int a, b, k; scanf("%d %d %d", &a, &b, &k); a ++, b ++;
int ret = calc(a, b, k);
printf("%d\n", ret);
}
}
return 0;
}