Python+Flask
非流式输出:
from PIL import Image
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
model = Qwen2VLForConditionalGeneration.from_pretrained(
"../Model/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("../Model/Qwen2-VL-2B-Instruct")
#这里的两个目录都是你模型根目录
app = Flask(__name__)
CORS(app)
@app.route('/', methods=['POST'])
def process_message():
try:
message = request.form.get('question')
image_file = request.files.get('picture')
if not message or not image_file:
return jsonify({'success': False, 'message': 'No question or image received!'})
image = Image.open(image_file.stream)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": message},
],
}
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)
inputs = inputs.to("cuda")
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [
output_ids[len(input_ids):]
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(output_text[0])
return jsonify({'success': True, 'message': output_text[0]})
except Exception as e:
print(f"Error: {e}")
return jsonify({'success': False, 'message': 'An error occurred while processing the request.'})
if __name__ == '__main__':
app.run(debug=True)
流式输出:
from PIL import Image
from flask import Flask, request, jsonify, Response
from flask_cors import CORS
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import time
import torch
model_string = '../Model/Qwen2-VL-2B-Instruct'
app = Flask(__name__)
CORS(app, resources={r"/*": {"origins": "*"}})
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_string,
torch_dtype=torch.float16,
device_map="cuda"
)
processor = AutoProcessor.from_pretrained(model_string)
@app.route('/', methods=['POST'])
def process_message():
try:
message = request.form.get('question')
image_file = request.files.get('picture')
if not message or not image_file:
return jsonify({'success': False, 'message': '缺少问题或图片!'})
image = Image.open(image_file.stream).convert("RGB")
image = image.resize((512, 512), resample=Image.Resampling.BILINEAR)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": message},
],
}
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
).to("cuda")
output_ids = model.generate(
**inputs,
max_new_tokens=400,
do_sample=False,
temperature=0.7,
top_p=0.9,
return_dict_in_generate=True,
output_scores=True
)
def stream_output():
text = ''
OK = False
for token_id in output_ids.sequences[0]:
token = processor.decode([token_id], skip_special_tokens=True)
if OK:
yield token
time.sleep(0.02)
else:
text += token
if text.count('assistant') == 2:
OK = True
return Response(stream_output(), content_type='text/plain;charset=utf-8')
except Exception as e:
print(f"错误: {e}")
return jsonify({'success': False, 'message': '处理请求时发生错误。'})
finally:
torch.cuda.empty_cache()
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=False, threaded=True)